Course Syllabus

EEMF 6321 — Active Semiconductor Devices Spring 2016

Professor Contact Information William R. Frensley ECSN 3.928

(972)883-2412 frensley@utdallas.edu

Course Pre-requisites, Co-requisites, and/or Other Restrictions

Pre-requisite: *EEMF 6319 Quantum Physical Electronics*, or demonstrated knowledge of the following:

Requisite Knowledge:

Calculus-based undergraduate Physics: Mechanics and Electricity & Magnetism Engineering Electromagnetic theory Semiconductor physics, including: Energy-band theory Carrier distribution in equilibrium

Recommended Co-requisite: EE6320 Fundamentals of Semiconductors

Course Description

The physics of operation of active devices will be examined, including bipolar junction transistors and field-effect transistors: MOSFETs, JFETS, and MESFETS. Special-purpose MOS devices including memories and imagers will be presented.

Student Learning Objectives/Outcomes

This course is designed to provide a detailed understanding of active semiconductor devices, how they function, how different devices are related, and how their properties are likely to evolve in the future. Specific learning objectives include:

1. Understand and be able to evaluate idealized models of the Bipolar Junction Transistor (BJT) and the effects of non-idealities such as base-width modulation.

2. Understand the general properties and limitations of gradual-channel Field-Effect Transistor (FET) models.

3. Demonstrate the ability to evaluate electrical properties of the MOS structure and gradualchannel models of the Junction FET (JFET) and Metal-Oxide-Semiconductor FET (MOSFET), and understand the consequences of reducing the dimensions of these devices.

4. Understand the principles of operation of spontaneously oscillating diodes: negative resistance and transit time devices.

5. Understand the principles of operation of simple optoelectronic devices: optical sources and detectors.

Required Textbooks and Materials

William R. Frensley, *Understanding Electron Devices* (an electronic work in progress, can be downloaded at:

http://www.utdallas.edu/~frensley/UndElDev/download/

(This web site is password protected. Access codes will be given out in class.) Also, please note the difference in this font between the letter I and the numeral 1.

Other required resources will be handed out in class.

Course Outline

- 1) Review of Fundamentals
 - a) Equilibrium carrier distribution
 - b) Self-consistency and screening
 - c) Drift-diffusion transport and current continuity
 - d) Current flow across Schottky barriers and PN junctions.
- 2) Bipolar Junction Transistors
 - a) I(V) characteristics
 - b) Device models
- 3) Junction Field-Effect Transistors
 - a) Junction FETs (JFETs)
 - b) Metal-Semiconductor FETs (MeSFETs)
- 4) Metal-Oxide-Semiconductor FETs
 - a) MOS interface behavior
 - b) Ideal characteristics
 - c) Advanced MOS topics
 - i) Interface physics
 - ii) Characterization
 - iii) Non-idealities
 - d) Specialized devices
 - i) MOS memories
- 5) A historical technology: vacuum tubes
- 6) Transistor systematics: BJT and FET are limits of a single device continuum.
- 7) Microwave devices
 - a) Tunnel diode
 - b) Gunn effect
 - c) IMPATT
- 8) Optical devices
 - a) Sources
 - b) Detectors

Teaching Assistant:

Mohammad Abou -Saba Email: MXA116630@utdallas.edu Office hours: TBD

Exams

There will be a midterm exam in March. There will be a final examination at the time designated by the University.

Grading Policy

Scoring coefficients: Homework 25% Mid-term exam 25% Final exam 50%

Course & Instructor Policies

Assignments and exams are due at the specified times. If employment, illness, or personal obligations create conflicts, please see me well before the due dates.

Off-campus Instruction and Course Activities

None.

Comet Creed

This creed was voted on by the UT Dallas student body in 2014. It is a standard that Comets choose to live by and encourage others to do the same:

"As a Comet, I pledge honesty, integrity, and service in all that I do."

UT Dallas Syllabus Policies and Procedures

The information contained in the following link constitutes the University's policies and procedures segment of the course syllabus.

Please go to http://go.utdallas.edu/syllabus-policies for these policies.

The descriptions and timelines contained in this syllabus are subject to change at the discretion of the Professor.