

Course Syllabus

Course Information

CS/SE 3340.001 - Computer Architecture

<u>Term</u>: Fall 2016

<u>Days & Time and Location</u>: TTh 2:30PM-3:45PM @ ECSS 2.305

Instructor Contact Information

Nhut Nguyen, Ph.D. Phone: 972-883-4521

Email: nhutnn@utdallas.edu

Office hours: TTh 4:00PM – 5:00PM, also by appointment

Office: ECSS 3.607

Course Pre-requisites, Co-requisites, and/or Other Restrictions

CE/CS/TE 1337 or equivalent, and CE/CS/TE 2305 or equivalent.

Course Description

This course introduces the concepts of computer architecture by going through multiple levels of abstraction, the numbering systems and their basic computations. It focuses on the instruction-set architecture of the MIPS machine, including MIPS assembly programming, translation between MIPS and C, and between MIPS and machine code. General topics include performance calculation, processor datapath, pipelining, and memory hierarchy. Students that have credit for CS 2310 or CS/SE4340 cannot receive credit for this course (3 semester hours).

Student Learning Objectives/Outcomes

After successful completion of this course, the student should

- be able to write a fully functional, stand-alone medium size assembly language program (e.g. a basic Telnet client)
- have an ability to represent numbers in and convert between decimal, binary, and hexadecimal and perform calculations using 2's complement arithmetic
- understand the basic model of a computer including the datapath, control, memory, and I/O components
- be able to program efficiently in an assembly level instruction set, including the use of addressing modes and data types
- understand the role of compilers, assemblers, and linkers and how programs are translated into machine language and executed

- be able to demonstrate comprehension of a pipelined architectures including datapaths and hazards
- understand the memory hierarchy including caches and virtual memory
- be able to demonstrate comprehension of computer performance measures and their estimation

Required Textbook:

"Computer Organization and Design - The Hardware/Software
Interface - 5th Edition", Patterson and Hennessey, Morgan-Kaufmann, 2013.
ISBN-13: 978-0124077263. Note: there are several editions of the same title, make sure that you get the correct edition (for MIPS).

Required Course Materials:

RISC ASSEMBLER/SIMULATOR

It is assumed you are familiar with the PC environment, can create and edit text files, run programs, etc. The programs will be in assembly language for the MIPS processor. This course uses the MARS MIPS assembler and simulator. MARS is available, free, for download from the Internet through the site:

http://courses.missouristate.edu/kenvollmar/mars/.

The MARS simulator can assemble MIPS assembly language source files, load and run them with a users console window for input/output, and debug them if they do not work properly.

Assignments & Academic Calendar

Exams: There will be three exams during the course: two midterms and a final exam. The exams will be open notes: notes taken during the sessions can be used in the exams but no books or slides are allowed. The midterm exams will be limited to material covered during the immediate unit but the final exam is comprehensive. Test material will be taken mainly from classroom lectures.

Assignments: There will be regularly assigned reading and homework. Reading assignments should be done before the class session. Homework will require the student to spend time programming a computer outside of class. It includes a program to demonstrate the correct operation of the assigned tasks.

There will be regularly assigned in-class exercises that will be used to assess student's participation.

Project: A team programming project will be assigned. Details will be announced in the class.

Assignments should be submitted using your eLearning account. Each programming assignment must contain:

- 1. A copy of the final working assembly language source code with comments and documentation. The file should be "text-only" and the extension must be ".s" or ".asm".
- 2. A screenshot showing keyboard input and displayed output from the console.

Tentative Class Schedule

Session	Date	Торіс	Reading	Assignments	Due
1	Aug 23	Introduction			
2	Aug 25	Intro to computer organization	Ch 1		
3	Aug 30	Introduction to Assembly Language Programming	Appendix A	HW #1	
4	Sep 01	Performance evaluation, Amdahl's law	Ch 1.6,1.9		
5	Sep 06	Data Representations, Bin/Oct/Hex	Ch.2.3		HW #1
6	Sep 08	Number Representations: signed, floating point	Ch.2.4	HW #2	
7	Sep 13	Instructions Representation	Ch 2.5		
8	Sep 15	Assembly Ops: Load/Store/Add/Sub/etc	Ch 2.2		HW #2
9	Sep 20	Comparing, Branching and Looping	Ch 2.7	HW #3	
10	Sep 22	Bits and bytes manipulation & other instructions	Ch 2.6		
11	Sep 27	Subroutines in Assembly language	Ch 2.8, A.6		HW #3
12	Sep 29	Exam I review		HW #4	
13	Oct 04	Exam I			
14	Oct 06	Comparing ISAs	Ch. 2.16-7		HW #4
15	Oct 11	Addressing modes & System software	Ch 2.10, 2.12-13	HW #5	
16	Oct 13	Integer Arithmetic	Ch 3.1-3.4		
17	Oct 18	Floating Point Arithmetic	Ch 3.5		HW #5
18	Oct 20	Input & Output		HW #6	
19	Oct 25	Interrupts and Exceptions	Ch 4.9, A.7		
20	Oct 27	Exam II review			HW #6
21	Nov 01	Exam II			
22	Nov 03	Processor: Datapath & Control	Ch 4.1-4	HW #7	
23	Nov 08	Processor: Pipelining	Ch 4.5		
24	Nov 10	Processor: Pipelined Datapath	Ch 4.6-8		HW #7
25	Nov 15	Advanced Instruction Level Parallelism	Ch 4.10		
26	Nov 17	Introduction to memory hierarchy	Ch 5.1-3		
27	Nov 22	No Class			
28	Nov 24	No Class			
29	Nov 29	Virtual Memory	Ch 5.4-7		
30	Dec 01	Exam III Review			Project
31	Dec 06	Exam III			

Grading Policy

The grade each student will earn from this class will be based on a weighted score calculated by using the following table:

Exam I	10%
Exam II	15%
Exam III	30%
Assignments	15%
Project	25%
Participation	5%
	100%

Grades will be assigned according to the scale on the right:

93.0 - 1	0 0	A
90.0 - 92	2.9	A-
87.0 - 89	.9	B+
83.0 - 86	5.9	В
80.0 - 82	2.9	В-
77.0 - 79	.9	C+
73.0 - 76	5.9	C
70.0 - 72	2.9	C-
67.0 - 69	.9	D+
60.0 - 66	5.9	D
Below 60	0.0	F

Weighted Score

Grade

Programming assignments grading:

Code Development	30%	(compile w/o error)
Program Execution	20%	(run successfully)
Program Design	25%	(conform to spec)
Documentation	15%	(program, comments)
Coding Style	10%	(clear, efficient)

Course & Instructor Policies

There will be no makeup exams under normal circumstances. No late homework or assignment will be accepted!

UT Dallas Syllabus Policies and Procedures

The information contained in the following link constitutes the University's policies and procedures segment of the course syllabus.

Please go to http://go.utdallas.edu/syllabus-policies for these policies.

These descriptions and timelines are subject to change at the discretion of the Instructor.