
CS 6301-002: Language-based
Security
Course Information
Title: CS/SE 6301-002: Language-based Security
Course Registration Number: 82035/82036
Times: MW 1:00–2:15
Location: ECSN 2.120
Instructor: Dr. Kevin Hamlen (hamlen AT utdallas)
Instructor's Office Hours: MW 2:15–3:15, ECSS 3.704

Course Summary
This course will introduce and survey the field of Language-based Software
Security, in which techniques from compilers and programming language theory
are leveraged to address issues in computer security. Topics include:

1. Certifying Compilers
2. In-lined Reference Monitors
3. Software Fault Isolation
4. Address Space Randomization
5. Formal Methods
6. Web Scripting Security
7. Information Flow Control

The aim of the course is to allow each student to develop a solid understanding of
at least one of these topics, along with a more general familiarity with the range
of research in the field. In-course discussion will highlight opportunities for
cutting-edge research in each area. If you do research involving software security,
this course will provide you with an array of powerful tools for addressing
software security issues. If you do research involving programming languages or
compilers, this course will show you how to take techniques that you already
know and apply them to a new and important problem domain. If your career
involves management or development of high-assurance software systems, this
course will provide a comparative analysis of traditional versus language-based
techniques.

The course is open to Ph.D. students and Masters students. Interested
undergraduates should see the instructor for permission to take the course.

Suggested (non-mandatory) prerequisite: CS 6371 Advanced Programming
Languages (or taken concurrently)

http://utd.edu/locator/ECSN_2.120
http://www.utdallas.edu/~hamlen
http://utd.edu/locator/ECSS_3.704


Grading
Homework (30%): For the first 10 weeks of the course, students will complete a
series of programming exercises assigned through eLearning. Background
material helpful for completing the exercises can be found in the online textbook
Software Foundations.

Quizzes (30%): Most classes will begin with a short quiz testing the students
comprension of an assigned reading for the day. Questions will typically be
multiple choice or short answer. The easier questions will be designed to test
whether the student has read the material, and the harder ones will test deeper
understanding of more subtle points.

Class Participation (10%): Students are expected to come to class having read
the assigned paper(s), and prepared with questions, critiques, and discussion
topics. Regular attendance and class participation will count 10% towards their
grades in the course.

Project (30%): Students will work individually or in a small team for the last 6
weeks of the course to complete a small project using the Coq theorem-prover. A
typical project will involve implementing and formally verifying a standard
algorithm of the student's choosing. Students will present their projects in class,
with the presentation counting toward their project grade.

Texts
In our study of the Coq theorem proving system, we will be using the following
online textbook:

• Benjamin C. Pierce, Chris Casinghino, Michael Greenberg, Vilhelm Sjöberg,
and Brent Yorgey. Software Foundations, Version 4.0. University of
Pennsylvania, May 2016.

For those who wish to explore Coq in greater depth (e.g., for developing their
projects), the following book by the Coq developers is highly recommended:

• Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Springer-Verlag, 2004.

Additionally, the following two texts available through the UTD library may be
useful for general background on type theory and computer security, respectively:

• Benjamin C. Pierce, ed., Advanced Topics in Types and Programming
Languages. MIT Press, Cambridge, MA 2005. (available online from UTD
computers)

http://www.cis.upenn.edu/~bcpierce/sf/
http://coq.inria.fr
http://www.cis.upenn.edu/~bcpierce/sf/
http://www.springer.com/computer/swe/book/978-3-540-20854-9
http://www.springer.com/computer/swe/book/978-3-540-20854-9
http://libproxy.utdallas.edu/login?url=http://www.netLibrary.com/urlapi.asp?action=summary&v=1&bookid=138471
http://libproxy.utdallas.edu/login?url=http://www.netLibrary.com/urlapi.asp?action=summary&v=1&bookid=138471


• Matt Bishop. Computer Security: Art and Science. Addison-Wesley, 2003.
(available online from UTD computers)

Tentative Course Schedule

Date Topic Assigned Reading(s) Coq Exercises

Program-Proof Co-development

Lecture
1:
Mon 8/
22

Introduction to
Formal
Methods and
Secure
Software
Development

Lecture
2:
Wed 8/
24

Higher-order
Types

Software Foundations:
"Basics" chapter, up to and
including the first two
exercises (nandb, andb3).

Lecture
3:
Mon 8/
29

Machine-
verified Proofs

F. Williams. Investigating
SANS/CWE Top 25
Programming Errors. Tech.
Rep. ICTN 6870, E. Carolina
University, 2009.

Lecture
4:
Wed 8/
31

Proof Tactics

J. Walden, J. Stuckman, and
R. Scandariato. Predicting
Vulnerable Components:
Software Metrics vs Text
Mining. In Proc. 25th Int.
Sym. Software Reliability
Engineering (ISSRE), pp.
23–33, November 2014.

Assignment 1
due 8/31

(Coq Basics)

No
Class:
Mon 9/5

No Class: Labor
Day

Lecture
5:
Wed 9/7

Logical
Operators

P. Hudak. Conception,
Evolution, and Application of
Functional Programming
Languages. ACM Computing

Assignment 2
due 9/7

(Induction)

http://library.utdallas.edu/cgi-bin/Pwebrecon.cgi?Search_Arg=Computer+Security%3A+Art+and+Science&Search_Code=TALL&DB=local&HIST=1
http://www.cis.upenn.edu/~bcpierce/sf/


Surveys, 21(3):359–411,
May 1989.

• Required sections:
Abstract,
Introduction, 2.1, 2.3,
and 2.4

Lecture
6:
Mon 9/
12

Constructivistic
Logic
Veridrone Source
Repository on
GitHub

G. Malecha, D. Ricketts,
M.M. Alvarez, and S. Lerner.
Towards Foundational
Verification of Cyber-
physical Systems, Invited
Paper. In Proc. Science of
Security for Cyber-Physical
Systems Workshop
(SoSCyPS), April 2016.

Lecture
7:
Wed 9/
14

Non-
termination,
Soundness, and
Contradiction

no assigned reading Assignment 3
due 9/14
(Lists)

Lecture
8:
Mon 9/
19

Coq Wrap-up
FCF Source
Repository on
GitHub

A. Petcher and G. Morrisett.
The Foundational
Cryptography Framework.
In Proc. Int. Conf. Principles
of Security and Trust
(POST), 2015.

Software Security Fundamentals

Lecture
9:
Wed 9/
21

The Science of
Security

J. Bau and J. C. Mitchell.
Security Modeling and
Analysis. IEEE Security &
Privacy 9(3):18–25, 2011.

Assignment 4
due 9/21

(Polymorphism)

Lecture
10:
Mon 9/
26

Formally
Verified
Compilation

X. Leroy. Formal Verification
of a Realistic Compiler.
Communications of the
ACM, 52(7):107–115, 2009.

Assignment 5
due 9/28

(Tactics &
Logic)

https://github.com/ucsd-pl/veridrone
https://github.com/ucsd-pl/veridrone
https://github.com/ucsd-pl/veridrone
https://github.com/adampetcher/fcf
https://github.com/adampetcher/fcf
https://github.com/adampetcher/fcf


Lecture
11:
Wed 9/
28

Machine Code
Validation

• D. Brumley, I. Jager, T.
Avgerinos, and E.J.
Schwartz. BAP: A
Binary Analysis
Platform. In Proc. Int.
Conf. Computer Aided
Verification (CAV),
2011.

• A Formal
Specification for BIL:
BIL Instruction
Language, October
2015.

Lecture
12:
Mon 10/
3

Software
Model-
checking

M. Müller-Olm, D. Schmidt,
and B. Steffen. Model-
Checking: A Tutorial
Introduction. In Proc. 6th
Int. Sym. Static Analysis
(SAS), pp. 330–354,
September 1999.

• Required sections:
1–4.2 and 5

• I will not quiz you on
the parts about fixed
point theory in
Section 3.3, but do
read the paragraph on
Computational Tree
Logic.

Code-reuse Attacks and Defenses

Lecture
13:
Wed 10/
5

Return-
oriented
Programming

E.J. Schwartz, T. Avgerinos,
and D. Brumley. Q: Exploit
Hardening Made Easy. In
Proc. 20th USENIX Security
Symposium, 2011.

Lecture
14:

Artificial
Diversity

H. Shacham, M. Page, B.
Pfaff, E.-J. Goh, N.

Assignment 6
due 10/10
(Inductive

Propositions)



Mon 10/
10

Modadugu, and D. Boneh.
On the Effectiveness of
Address-Space
Randomization. In Proc.
ACM Conf. Computer and
Communications Security
(CCS), pp. 298–307, 2004.

Lecture
15:
Wed 10/
12

Control-flow
Integrity

M. Abadi, M. Budiu, Ú.
Erlingsson, and J. Ligatti.
Control-Flow Integrity:
Principles, Implementations,
and Applications. In Proc.
ACM Conf. Computer and
Communications Security,
pp. 340–353, 2005.

Lecture
16:
Mon 10/
17

Binary Stirring

R. Wartell, V. Mohan, K.W.
Hamlen, and Z. Lin. Binary
Stirring: Self-randomizing
Instruction Addresses of
Legacy x86 Binary Code. In
Proc. ACM Conf. Computer
and Communications
Security (CCS), 2012.

Lecture
17:
Wed 10/
19

Binary
Software
Security
Retrofitting

R. Wartell, V. Mohan, K.W.
Hamlen, and Z. Lin.
Securing Untrusted Code via
Compiler-Agnostic Binary
Rewriting. In Proc. 28th
Annual Computer Security
Applications Conf. (ACSAC),
pp. 299–308, December
2012.

Lecture
18:
Mon 10/
24

TBA

G. Morrisett, G. Tan, J.
Tassarotti, J.-B. Tristan, and
E. Gan. RockSalt: Better,
Faster, Stronger SFI for the
x86. In Proc. 33rd ACM
SIGPLAN Conf.
Programming Languages
Design and Implementation

Assignment 7
due 10/26

(Case Study)



(PLDI), pp. 395–404, June
2012.

Lecture
19:
Wed 10/
26

Project Group
Meetings no assigned reading

In-lined Reference Monitors

Lecture
20:
Mon 10/
31

Theory of IRMs

F.B. Schneider. Enforceable
Security Policies. ACM
Transactions on Information
and System Security,
3(1):30–50, 2000.

Lecture
21:
Wed 11/
2

Aspect-
Oriented
Programming
and IRMs

M. Jones and K.W. Hamlen.
Disambiguating Aspect-
oriented Security Policies. In
Proc. 9th Int. Conf. Aspect-
Oriented Software
Development (AOSD), pp.
193–204, March 2010.

Lecture
22:
Mon 11/
7

Model-
checking IRMs

K.W. Hamlen, M.M. Jones,
and M. Sridhar. Aspect-
oriented Runtime Monitor
Certification. In Proc. 18th
Int. Conf. Tools and
Algorithms for the
Construction and Analysis of
Systems (TACAS), pp.
126–140, March–April 2012.

Lecture
23:
Wed 11/
9

Language-
based Web
Scripting
Security

P.H. Phung, M.
Monshizadeh, M. Sridhar,
K.W. Hamlen, and V.N.
Venkatakrishnan. Between
Worlds: Securing Mixed
JavaScript/ActionScript
Multi-party Web Content.
IEEE Transactions on
Dependable and Secure
Computing (TDSC),

Project



12(4):443–457, July–August
2015.

Information Flow Controls

Lecture
24:
Mon 11/
14

Intro to
Information
Flow

A. Sabelfeld and A.C. Myers.
Language-Based
Information-Flow Security.
IEEE J. Selected Areas in
Communications,
21(1):5–19, 2003.

Lecture
25:
Wed 11/
16

Type-based
Information
Flow Controls

A.C. Myers. JFlow: Practical
Mostly-Static Information
Flow Control. In Proc. 26th
ACM Sym. Principles of
Programming Languages
(POPL), pp. 228–241, 1999.

No
Class:
Mon 11/
21

No Class: Fall
Break

No
Class:
Wed 11/
23

No Class: Fall
Break

Software Cyber Deception

Lecture
26:
Mon 11/
28

Honeypots and
Honey-
patching

F. Araujo, K.W. Hamlen, S.
Biedermann, and S.
Katzenbeisser. From Patches
to Honey-Patches:
Lightweight Attacker
Misdirection, Deception, and
Disinformation. In Proc.
ACM Computer and
Communications Security
(CCS), 2014.

Lecture
27:

Dynamic Secret
Redaction

F. Araujo and K.W. Hamlen.
Compiler-instrumented,
Dynamic Secret-Redaction



Wed 11/
30

of Legacy Processes for
Attacker Deception. In Proc.
USENIX Security
Symposium, 2015.

Lecture
28:
Mon 12/
5

TBA

Lecture
29:
Wed 12/
7

Project
Presentations


	CS 6301-002: Language-based Security
	Course Information
	Course Summary
	Grading
	Texts
	Tentative Course Schedule


