Course Syllabus for

MECH 3V95 – Circuits and Applied Electronics

Section	Days	Time	Room	Instructor	TAs
001	MW	11:30-12:20pm	ECSN 2.126	Ann Majewicz	Marzieh Ershad
001 (Lab)	F	10:00-12:45pm	SPN 1.115	Robert Hart	Ziheng Wang

Professor Contact Information

Dr. Ann Majewicz

Office: ECSN 2.218

Office Hours: Wednesday, 3:00-4:00 pm

Phone: 972-883-4426

Email: Ann.Majewicz@utdallas.edu

Dr. Robert Hart

Office: ECSN 2.514

Office Hours: TBD

Phone: 972-883-4225

Email: <u>rxh124630@utdallas.edu</u>

Teaching Assistant Contact Information

Name: Marzieh Ershad Office: ECSN 2.412

Office Hours: TBD

Email: mxe141430@utdallas.edu

Name: Ziheng Wang Office: SPN 1.115

Office Hours: TBD

Email: zxw151130@utdallas.edu

Course Pre-requisites, Co-requisites, and/or Other Restrictions

Pre-requisite: MECH 1208, PHYS 2326 and MATH 2420

Other Restrictions: None

Course Description

The purpose of this course is to give students a general understanding of basic concepts in electronics geared specifically toward application. Course topics include: circuit components and theory (resistors, capacitors, inductors, component networks), power concepts (AC, DC,

single and 3-phase) basic microelectronics (semiconductors, diodes, transistors, op-amps, amplifiers), and digital design (number systems, logic circuits, common ICs). This course includes a laboratory component and team-based final project.

Course Objectives and Topics

Introduce theory, analysis, and application of a variety of electronic components and circuits. The learning objectives/outcomes for this course are as follows:

- Understand the function and application of analog and digital electronic components.
- Analyze electronic circuits involving common analog components, both time-invariant and time-varying systems.
- Use common test equipment to safely and accurately measure voltage, current, and power.
- Design and build electronic circuits to perform tasks common in engineering applications such as amplification, filtering, etc.

Required Textbook and Supplies

Authors: Ulaby, Fawwaz T., Maharbiz, Michel M.

Title & Edition: Circuits, 2nd Edition ISBN-13: 9781934891193

And additional recommended text is:

Authors: Hambley, Allan R.

Title & Edition: Electrical Engineering: Principles & Applications, 6th Edition

ISBN-13: 9780133116649

It is strongly suggested that you use a personal laptop for this course. The software used in this course includes: Microsoft Office (Word, Excel, Power Point), Matlab and Multisim. These can be purchased from the UTD Technology Store (http://www.utdtechstore.com/).

All software is also available in the TI Innovation Lab (SPN 1.115).

Notes, supporting material, and other resources will be posted on eLearning.

Important Dates

Labor Day (no classes):

Last day to withdraw without "W":

Last day to withdraw with "W":

Fall Break (no classes):

Last day of classes:

Pinals week:

September 5

September 7

November 7

November 21-26

December 7

December 9-15

Course Structure and Schedule

In MECH 3V95, you will attend two 50-minute class sessions each week, which will take place in **ECSN 2.126** and well as one 3 hour laboratory session which will take place in **SPN 1.115**.

The following is a *tentative* schedule of class topics. These dates are subject to change. It is your responsibility to keep up with any changes.

Week	Class	Lab	Topic(s)	Laboratory	
1	8-22	8-25	Overview of Course, Electrical Concepts	Floatrical Magaurament	
	8-24 6-25		Basic Circuit Components and Analysis	Electrical Measurement	
2	8-29	9-1	Basic Circuit Components and Analysis	Temperature	
	8-31		Basic Circuit Components and Analysis	Measurement	
3	9-5	9-8	NO CLASS LABOR DAY	Amplifiara	
3	9-7		Op Amps	Amplifiers	
4	9-12	9-16	Op Amps	Amplifiara	
4	9-14	9-10	Op Amps	Amplifiers	
5	9-19	9-23	Semiconductors and Diodes	Soldering Lab	
5	9-21		Transistors	+ PROJECT INTRO	
6	9-26 9-28	9-30	Transistors	Transistors and Relays	
•		9-30	Digital Number Systems and Logic		
7	10-3	10-7	Digital Logic	Digital Lab	
,	10-5	10-7	Finding ICs + Reading Datasheets	-	
8	10-10	10-14	First-order Electrical Systems (RC, RL)	PROJECT PROPOSAL	
0	10-12	10-14	First-order Electrical Systems (RC, RL)	PRESENTATIONS	
	10-17	10-21	Midterm Exam Review		
9	10-18	10-21	MIDTERM EXAM (in testing center)	RC, RL Measurement	
	10-19		NO CLASS		
10	10-24	10-28	Second-order Electrical Systems (RLC)	Power Supply Voltage	
10	10-26	10-20	Second-order Electrical Systems (RLC)	Regulator	
	10-31		Steady-State Analysis	PROJECT CRITICAL	
11	11-2	11-4	Steady-State Analysis	DESIGN REVIEW	
				+ Project Work Time	
12	11-7	11-11	AC Power (Guest Lecturer Robert Hart)	Project Work Time	
14	11-9	11-11	AC Power (Guest Lecturer Robert Hart)		
13	11-14	11-18	Transformers (Guest Lecturer Robert Hart)	Operational Check-off +	
10	11-16	11-10	Laplace and Fourier	Project Work Time	
14	11-21	11-25	FALL BREAK NO CLASS	NO LAB	
	11-23	11 20	FALL BREAK NO CLASS	NO LAB	
15	11-28	12-2	Laplace and Fourier	Final Project Demos	
	11-30	122	Laplace and Fourier	minai Froject Demos	
	12-5		Applications in Mechanical Systems		
16	12-7	12-9	Final Exam Review Session + PROJECT		
			CLOSE OUT		
	Follow final exam schedule				
17			Final Exam		

Grading Policy

[35%] Exams and Quizzes: There will be a midterm and final exam, composing 66% of the exam grade. Throughout the course, there will be 12 quizzes, either in class, or on eLearning. Grades for the lowest two quizzes will be dropped, and the remaining 10 will be counted as an additional exam. The quizzes will be predominantly conceptual T/F or multiple choice questions based on assigned videos, or short problems for in-class quizzes. Make-up exams will only be allowed for the cases of illness, participation in a university-sponsored event (e.g., athletics), or under unusual circumstances. For all cases, you are required to provide proper documentation.

[40%] Homework and Laboratory Assignments: There will be weekly, written homework laboratory completion worksheets or reports. These deliverables will be graded based on completeness, correctness, and legibility. Templates for homework and report submissions will be provided. Late assignments will not be accepted under any circumstances and the lowest homework grade will be dropped. All laboratory deliverables are required – no exceptions.

[25%] Final Project: The final design project will be graded on (1) a circuit proposal, (2) a critical design review, (3) a demonstration of an operational circuit, (4) participation in the class Demo Day, and (5) a final project report. The class demo day will be on Friday, December 2nd from 11:30am to 1:00pm in the ECSN Foyer, and will be open to the public, including UTD faculty and students.

You have five business days to appeal any grade after being assigned.

Your final grade will be rounded to the nearest whole number, based on the following ranges:

	Plus (+)		Minus (-)
Α	100 - 97	96 - 93	92 - 90
В	89 - 87	86 - 83	82 - 80
С	79 - 77	76 - 73	72 - 70
D	69 - 67	66 - 63	62 - 60
F		59 and below	

Course & Instructor Policies

Email <u>must be sent from your UTD email account</u> to the UTD email address of the instructor. Emails related to homework submissions should be addressed to both the instructor and TA.

The use of laptop computers, tablets, cell phones, or other electronic devices are **not** allowed during lectures or exams, unless required for the activity.

Academic dishonesty will not be tolerated. All suspected cases of academic dishonesty will be sent to the Office of Judicial Affairs (see http://www.utdallas.edu/deanofstudents/managing/). If it is determined that academic dishonesty occurred you will receive a grade of **F** in this course.

For a full list of university policies, please visit http://go.utdallas.edu/syllabus-policies

THE INFORMATION IN THIS DOCUMENT IS SUBJECT TO CHANGE AT THE DISCRETION OF THE INSTRUCTOR.