The University of Texas at Dallas – Course Syllabus

MECH 6374 – Conductive and Radiative Heat Transfer Department of Mechanical Engineering

Course Information:

Course Number/Section	MECH6374.001	
Course Title	Conductive and radiative Heat Transfer	
Term	Fall 2016	
Days & Times	Tuesday & Thursday: 2:30 - 3:45 am	
Meeting Place	ECSN 2.112	

Professor Contact Information: Prof. Zhenpeng Qin

<i>Office Phone Office Location Office Hours</i>	972-883-4440 ECSN 2.214 Tuesday: 1:00 - 2:00 pm	
Teaching Assistant:	Ms. Niloofar Mohammadi	
Teaching Assistant: Email	Ms. Niloofar Mohammadi nxm134130@utdallas.edu	
•		

Course Description:

Advanced conduction heat transfer followed by advanced radiation heat transfer. Emphasis on fundamental concepts of conduction/diffusion in heat and mass transfer including solving differential equations related to conduction. Radiation heat transfer covering black and non-black surfaces, shape factors, radiation exchange in gray diffuse enclosures, and solution methods for integro-differential equations. Multi-mode heat transfer combining conduction and radiation and recent developments in nanoscale conduction and radiative are also covered.

Textbook and References:

- D.W. Kahn, M.N. Ozisik, Heat Conduction, 3rd Ed. (required text, <u>available online</u> through university library)
- M.F. Modest, Radiative Heat Transfer, 3nd Ed. (required text, <u>available online</u> through university library)
- V.S. Arpaci, Conduction Heat Transfer.
- R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 5th Ed.

Student Learning Objectives/Outcomes

- Ability to analyze and formulate heat conduction problems (governing equation with boundary and initial conditions), and analytically solve 1D transient and 2D steady state problems.
- Ability to solve heat conduction problems with Laplace transform and Green's function approach with references
- Ability to analyze and formulate radiative heat transfer problems (governing equation with boundary conditions)

Grading & Course Policies:

- Grades will be determined based on a fixed point scale and a weighted average of homework and exams.
- Home assignments: **30%** Credit will be given only if the problems are turned in on time. Homework is due before class starts on the due date (<u>2:30pm sharp</u>). Late homework will NOT be acceptable.

- Projects: 30% Student will work in groups (3 students per group) to propose a project related to radiation
 and conduction heat transfer. A final report and presentation are required. For the report, student need to
 draft a proposal detailing the background, innovation, and proposed approach (4 pages) and a technique
 portion which details the analysis and simulation that supports the proposed project (6 pages). Grading will
 be evaluated based on student's report and presentation.
- Examinations: 30% Make-up exams will be only available by Professor's permission in advance.
- Class attendance: **10%** Students are expected to attend all class sessions and participate in class discussions. If a student misses a class, it is his/her responsibility to make up the missed class. It is at the Professor's discretion to determine the class attendance through various measures.
- Final grade: A: 93~100, A-: 90~92; B+: 87-89; B: 83~86; B-: 80-82; C: 70-79; F: <70.

Wk	Date	Topic	Homework (HW)
Radia	tive Heat T	ransfer	
1	08/23	Fundamentals	
1	08/25	Surface properties - Geometry	
2	08/30	Surface Properties	HW#1
2	09/01	Surface Properties	
3	09/06	View factor	
3	09/08	Radiative exchange between surfaces	HW#1 due
4	09/13	Radiative exchange between surfaces	HW#2
4	09/15	Monte Carlo (MC)	
5	09/20	Monte Carlo (MC)	
5	09/22	Monte Carlo (MC)	HW#2 due
6	09/27	Project progress and discussions	HW3
6	09/29	Radiation + Conduction + Convection – Ch7	
7	10/04	Radiative transfer equation (RTE) – Ch10, intro	
7	10/06	RTE	HW3 due
8	10/11	Particular media	
Cond	uctive Heat	Transfer	
8	10/13	Introduction, Separation of variables (SOV)	
9	10/18	SOV	HW#4
9	10/20	SOV	
10	10/25	SOV	HW#4 due
10	10/27	SOV – Superposition	
11	11/01	SOV – Superposition	HW#5
11	11/03	Cylindrical system SOV	
12	11/08	Cylindrical system SOV	
12	11/10	Laplace transform	HW#5 due
13	11/15	Laplace transform	
13	11/17	Project report and presentations	HW#6
14	11/22	No classes	
14	11/24	No classes	
15	11/29	Intro to Green's Function	
15	12/01	Determine Green's function	HW#6 due
16	12/06	Review	
	Final	Scheduled by the University, student needs to reserve	e a seat online!
	Exam		

Tentative schedule & topics as of Aug. 22nd 2016: Changes will be announced in the class through the semester.

UT Dallas Syllabus Policies and Procedures

The information contained in the following link constitutes the University's policies and procedures segment of the course syllabus.

Please go to <u>http://go.utdallas.edu/syllabus-policies</u> for these policies.

The descriptions and timelines contained in this syllabus are subject to change at the discretion of the Professor.