Course Syllabus Fall 2016

EEMF 6319 Quantum Physical Electronics

Professor Contact Information

William R. Frensley (972) 883-2412

ECSN 3.928 frensley@utdallas.edu

Course Pre-requisites, Co-requisites, and/or Other Restrictions

(including required prior knowledge or skills)

Requisite Knowledge:

Calculus-based undergraduate Physics: Mechanics and Electricity & Magnetism

Engineering Electromagnetic theory

Linear Algebra (vector spaces, matrices, eigenvalues).

Differential Equations and Partial Differential Equations.

Course Description

Quantum-mechanical foundation for study of nanometer-scale electronic devices. Principles of quantum physics, stationary-state eigenfunctions and eigenvalues for one-dimensional potentials, interaction with the electromagnetic field, electronic conduction in solids, applications of quantum structures.

Student Learning Objectives/Outcomes

- 1. Demonstrate knowledge of the wavelike nature of fundamental particles.
- 2. Show the ability to solve the Schroedinger Wave Equation for simple bound-state and propagating-state problems
- 3. Demonstrate an understanding of dispersion relations and their impact on electron dynamics.
- 4. Demonstrate the ability to identify quantum systems which will behave irreversibly, and show how to use simple models to evaluate their transition rates.

Required Textbooks and Materials

Textbook: William R. Frensley, *Understanding Electron Devices* (an electronic work in progress, can be downloaded at:

http://www.utdallas.edu/~frensley/UndElDev/download/

Username: EE6319

Password:

Course Syllabus Page 1

Course Topics

Introduction

Wave-Particle Duality

Indeterminacy

Schroedinger Wave Equation

Time-Independent Schroedinger Eq.

Simple Solutions of the Schroedingner Equation

Scattering by simple barriers

Tunneling

Probability currents

Simple bound states.

Square well

Quantum States and Operators

Linear vector spaces

Unitary and Hermitian Operators

Dirac notation

Quantum Measurements

Projections

Expectation values and moments

Commutators of Operators

Wave Packets and Uncertainty Relations

Analytic Solutions of the Schroedinger Equation

Harmonic Oscillator

Angular Momentum

Hydrogen atom

Getting Results from Quantum Mechanics

Expansions and matrix formulation

Perturbation theory

Energy bands in solids

Bloch theorem

Methods of calculating bands

The effective-mass approximation

Dynamics of band electrons (group velocity theorem and acceleration theorem)

Irreversible processes

Fermi Golden Rule

Equilibrium statistical mechanics

Boltzmann distribution

Fermi distribution

Density of states

Fermi level

Course Syllabus Page 2

Teaching Assistant:

Honglei Wang

Email: hxw113020@utdallas.edu

Office hours: Monday 5:30-7:00pm NSERL third floor.

Exams

There will be a midterm exam in early October.

There will be a final examination at the time designated by the University, most likely on Tuesday, Dec. 13, 2016 at 5:00 PM.

Grading Policy

Scoring coefficients:

Homework 20% Midterm exam 30% Final exam 50%

Course & Instructor Policies

Assignments and exams are due at the specified times. Absences due to work- or school-related travel must be approved in advance by the Professor.

Off-campus Instruction and Course Activities

None.

Comet Creed

This creed was voted on by the UT Dallas student body in 2014. It is a standard that Comets choose to live by and encourage others to do the same:

"As a Comet, I pledge honesty, integrity, and service in all that I do."

UT Dallas Syllabus Policies and Procedures

The information contained in the following link constitutes the University's policies and procedures segment of the course syllabus.

Please go to http://go.utdallas.edu/syllabus-policies for these policies.

The descriptions and timelines contained in this syllabus are subject to change at the discretion of the Professor.

Course Syllabus Page 3