Course Syllabus

Fall 2016

EEMF 6319 Quantum Physical Electronics

Professor Contact Information

William R. Frensley
(972) 883-2412

ECSN 3.928

Course Pre-requisites, Co-requisites, and/or Other Restrictions

(including required prior knowledge or skills)

Requisite Knowledge:

Calculus-based undergraduate Physics: Mechanics and Electricity \& Magnetism
Engineering Electromagnetic theory
Linear Algebra (vector spaces, matrices, eigenvalues).
Differential Equations and Partial Differential Equations.

Course Description

Quantum-mechanical foundation for study of nanometer-scale electronic devices. Principles of quantum physics, stationary-state eigenfunctions and eigenvalues for onedimensional potentials, interaction with the electromagnetic field, electronic conduction in solids, applications of quantum structures.

Student Learning Objectives/Outcomes

1. Demonstrate knowledge of the wavelike nature of fundamental particles.
2. Show the ability to solve the Schroedinger Wave Equation for simple bound-state and propagating-state problems
3. Demonstrate an understanding of dispersion relations and their impact on electron dynamics.
4. Demonstrate the ability to identify quantum systems which will behave irreversibly, and show how to use simple models to evaluate their transition rates.

Required Textbooks and Materials

Textbook: William R. Frensley, Understanding Electron Devices (an electronic work in progress, can be downloaded at:
ht t p: / / wuw. ut dal I as. edu/ ~frensl ey/ UndEl Dev/ downl oad/ Username: EE6319
Password: \qquad

Course Topics

Introduction
Wave-Particle Duality
Indeterminacy
Schroedinger Wave Equation
Time-Independent Schroedinger Eq.
Simple Solutions of the Schroedingner Equation
Scattering by simple barriers
Tunneling
Probability currents
Simple bound states.
Square well
Quantum States and Operators
Linear vector spaces
Unitary and Hermitian Operators
Dirac notation
Quantum Measurements
Projections
Expectation values and moments
Commutators of Operators
Wave Packets and Uncertainty Relations
Analytic Solutions of the Schroedinger Equation
Harmonic Oscillator
Angular Momentum
Hydrogen atom
Getting Results from Quantum Mechanics
Expansions and matrix formulation
Perturbation theory
Energy bands in solids
Bloch theorem
Methods of calculating bands
The effective-mass approximation
Dynamics of band electrons (group velocity theorem and acceleration theorem)
Irreversible processes
Fermi Golden Rule
Equilibrium statistical mechanics
Boltzmann distribution
Fermi distribution
Density of states
Fermi level

Teaching Assistant:

Honglei Wang
Email: hxw113020@utdallas.edu
Office hours: Monday 5:30-7:00pm NSERL third floor.

Exams

There will be a midterm exam in early October.
There will be a final examination at the time designated by the University, most likely on Tuesday, Dec. 13, 2016 at 5:00 PM.

Grading Policy

Scoring coefficients:
Homework 20\%

Midterm exam 30\%
Final exam 50\%

Course \& Instructor Policies

Assignments and exams are due at the specified times. Absences due to work- or school-related travel must be approved in advance by the Professor.

Off-campus Instruction and Course Activities

None.

Comet Creed

This creed was voted on by the UT Dallas student body in 2014. It is a standard that Comets choose to live by and encourage others to do the same:
"As a Comet, I pledge honesty, integrity, and service in all that I do."

UT Dallas Syllabus Policies and Procedures

The information contained in the following link constitutes the University's policies and procedures segment of the course syllabus.

Please go to http://go.utdallas.edu/syllabus-policies for these policies.

