
Page 1 of 9

CS 2336 Computer Science II
Fall 2016 Syllabus UTD

INSTRUCTOR INFORMATION

Name Mr. Jason Smith
E-mail address jws130830@utdallas.edu
Office ECSS 3.232
Office Phone 972-883-4835
Office Hours

E-mail: Emails will be answered 9 AM – 8 PM

On-Campus: Tu/Th 9:00 – 10:00 AM
11:30 AM – 12:30 PM

COURSE INFORMATION

Course Number CE/CS/TE 2336
Credit Hours 3
Meeting Time M/W 4:00 – 5:15 PM
Room ECSS 2.305

DO YOU NEED ASSISTANCE?

E-mail: The easiest way to reach me is via e-mail. I make every effort to respond within a few
hours. Please include your course and section either in the subject or the body of your
e-mail (preferably on the first line if not in the subject). This will help me to address
your e-mail as quickly as possible.

Help Desk: For help with issues regarding your computer, UTD maintains a walk-in help desk. Visit
their Web site for details: http://www.utdallas.edu/ir/helpdesk/

Tutoring: For programming assistance in CS2336, please visit me, the TA, or the Mentoring Center.
The schedule for the Mentoring Center will be released within the first week of classes. Once
the Mentoring Center schedule for this semester has been released, an announcement will be
posted on eLearning. If you need help, please make the effort to reach out. We can’t
help you if we don’t know that you need help.

Resources:
 C++ language tutorial http://www.cplusplus.com/files/tutorial.pdf
 C++ reference: http://www.cppreference.com
 C++ tutorial http://www.learncpp.com/

http://www.utdallas.edu/ir/helpdesk/
http://www.cplusplus.com/files/tutorial.pdf
http://www.cppreference.com
http://www.learncpp.com/

Page 2 of 9

WHAT DO I NEED FOR CLASS?

 Notebook – You are going to take a lot of notes and have quizzes. Bring paper to write on.

 Writing Tool – pen, pencil, crayon, etc. It’s hard to take notes without one. You are free to use
your own blood, but that gets messy.

 Textbook: C++ Programming, Program Design Including Data Structures
 (7th edition – green cover); Malik, D.S.; Cengage Learning
 ISBN 1-285-85275-3
 Feel free to rent or buy the book in either physical or digital form. We will use the book

heavily in the course, so please obtain a copy of the book as soon as you can.

 C++ Compiler (Required)
 All projects you submit will be compiled with MinGW 4.9.2. You may use any IDE that can

utilize MinGW 4.9.2.

In class, the IDE I will be using is Code::Blocks 16.01. This is a free download for
Windows.
http://sourceforge.net/projects/codeblocks/files/Binaries/16.01/Windows/codeblocks-16.01
mingw-setup.exe. This download includes the IDE and MinGW 4.9.2.

 For Mac users, I recommend using XCode or creating a Windows partition to install MinGW
and an IDE. Be advised that there is a Mac version of Code::Blocks, but it has been others
have reported it doesn’t work with newer versions of the OS X operating system.

 If a student uses a compiler other than MinGW 4.9.2 for development, he/she is
responsible for verifying prior to submission that the code compiles properly with
the stated compiler. No compiler is perfect and each one has its own quirks. It is the
student’s responsibility to make sure that the program functions as expected with the
compiler that will be used for grading (MinGW 4.9.2).

 If you intend to use your own computers to write the class assignments, it is important
that you get a compiler downloaded, installed, and running on your computer as soon as
possible. If you don’t have a computer, or if you’re having problems getting a compiler
installed, you should write your programs in the labs until the problems are resolved. In
any case, please note that you are responsible for getting the programming assignments
written and turned in on time. Since there are many computers available on campus,
problems with your local machines will not be accepted as an excuse for not doing the
assignments or late submissions.

REQUIRED COURSE INFORMATION SECTION

Course Prerequisite: The equivalent of a C or better in CE/CS/TE 1337 (AP credit required)

Course Prerequisite CE/CS/TE 2305 with a grade of C or better or equivalent.
/Co-requisite:

Description of Course Content: Further applications of programming techniques, introducing the
fundamental concepts of data structures and algorithms. Topics include recursion, fundamental
data structures (including stacks, queues, linked lists, hash tables, trees, and graphs), and

http://sourceforge.net/projects/codeblocks/files/Binaries/16.01/Windows/codeblocks-16.01mingw-setup.exe
http://sourceforge.net/projects/codeblocks/files/Binaries/16.01/Windows/codeblocks-16.01mingw-setup.exe

Page 3 of 9

algorithmic analysis. Includes comprehensive programming projects. Programming language of
choice is C++.

Student Learning Outcomes: Students will be able to implement different data structures using
the C++ programming language. They will be able use different data structures to program solutions
to solve real problems. It will also help them understand algorithmic analysis and complexities. After
successful completion of this course, you should be able to:
 Ability to implement recursive algorithms
 Ability to implement linked lists, stacks, and queues
 Ability to implement a binary tree
 Ability to use hash tables and graphs
 Ability to understand algorithmic analysis
 Ability to create a comprehensive programming project

WHAT I EXPECT OF EACH STUDENT

 Ask for help. Email me or stop by during office hours. I want you to succeed. I would
rather point you in the right direction so that you can complete an assignment instead of you
remaining quiet and failing an assignment.

 Ask questions any time! During lecture, before/after class, during office hours, at 2 AM
after a night clubbing the day before something is due, etc. I really mean any time. I will
respond as soon as I can.

 Take responsibility for your education. I will treat this course as similar to a professional
setting as I can. I am not the type of teacher that lectures with slides and expects students
to memorize. I will teach by creating program examples in class. I will give challenging
assignments to push you toward learning the intricacies of C++.

Part of being a professional is learning how to teach yourself. I am going to guide you
through the topics of the semester, but a significant portion of what you take with you to the
next class will be things that you learned on your own.

 Practice time management skills. All assignments (homework and projects) are designed
to be worked on over a period of days or weeks. I expect that you will work on the
assignment a little at a time rather than waiting until a day or two before it is due. Those
that procrastinate will find this class to be much harder than it should be and will face the risk
of below average grades.

 Attend every class. Not only might you miss essential words of wisdom, you might miss a
quiz as well.

 Make mistakes! This is how you learn how to do something. Don’t be discouraged when
something goes wrong. Programming takes lots of practice and mistakes will always happen.
 Study the mistakes you made so that you can learn the correct way to do it.

 Read the chapter before the corresponding lecture (see class schedule below). I use
class time to write programs that help illustrate the topics mentioned in each chapter. If a
student doesn’t have minimal knowledge of the concepts that will be covered for that chapter
(which are gained by reading the chapter), it will be harder to get a deeper connection to
what we are accomplishing in class.

 Bring your textbook to class. If you bought the physical version, I know it is heavy and
you would rather leave it at home to collect dust. However, we will refer to the book

Page 4 of 9

frequently in class. Your book wants to be a part of your academic experience. Don’t prevent
your book from having an adventure with you.

 Arrive to class on time and remain in class until dismissed. Arriving late and leaving
early cause disruptions to the other students in the class and to me. Should you need to
leave early for a valid reason, please notify me in advance and sit near the door to limit the
disruption. Repeat offenders will be penalized by replacing a previous quiz grade with a zero.

 Don’t sleep in class. Let’s be honest; programming in C++ is not the most exciting topic.
Combine that with fatigue from late night gaming and/or study sessions and it is super easy
to doze off. Fight it off. Bring in a caffeinated beverage of your choice, such as Starbucks
coffee or a Monster energy drink. Carry an emergency bottle of 5 Hour Energy in your
backpack if need be. If students could learn C++ by sleeping, there would be no reason to
get out of bed to attend class.

 Don’t pack up your things until class is over. Most of the time we will go until the very
last minute before ending class. Sometimes we might go over by a minute or two if I need to
finish a discussion. If students start packing up before we are finished, it makes a lot of
noise. That noise might prevent someone from hearing very crucial information such as what
the next homework assignment is and when it is due. It also makes me think you are in a
hurry to leave the awesome fun party we are having and hurts my feelings.

 No computers in class. I know, this sounds like crazy talk to say no computers in a
computer science classroom, but hear me out. I have seen grades improve by about 10% in
classes where I do not allow computers. Without a computer in front of them, students are
more engaged during class time.

Many students like coding along with me in class, however, this becomes a detriment to the
student. While students are copying the code I am writing in class, they are not
concentrating on the logic or details behind the code. It is the logic and ideas behind the
statements that are more important. All code that is written in class will be posted in
eLearning after it is completed.

WHAT EACH STUDENT SHOULD EXPECT

 An open environment dedicated to learning. I want students to feel free to voice their
opinions. Oftentimes as we code in class, I will ask students what they would do in a certain
situation. I want each student to feel as if he/she can speak freely and also be open for other
students to discuss that idea, even if that means that some students will disagree.

 Class commitment of 10-12 hours a week. Students should be prepared to tackle multiple
course-related activities each week (e.g. reading the textbook, studying for quizzes/exams,
practicing programming, etc.). There is a very high correlation between time committed to
this class and grades.

 A quiz could be given at any time. Quizzes will be given to measure how well you
understand the information from each chapter. It is each student’s responsibility to be
prepared. Quizzes will be based on chapter readings, examples from lecture and/or exercises
from the book and will primarily involve coding.

 Exams focused on application. I do not create run-of-the-mill multiple choice exams that
ask students to regurgitate things from memory. The exams are completely different than
anything you have had in any other class (unless you’ve had me for a previous class). I
expect you to apply the knowledge you have learned to the situations on the test. Questions
on the test are designed to make sure that you understand what you are doing rather than

Page 5 of 9

repeating an example from your notes or the textbook.

 A simulated professional experience. The projects in this class require you to exercise
strategies found in “the real world”. Your logic for a project may force you to learn new
techniques that haven’t been discussed in class. You will have to perform code maintenance
and improve the efficiency of previously written code. These things offer a small taste of how
life might be once you graduate and are given large sums of money by a company seeking
your skills.

 A deep understanding of C++. My goal is for you to know all of the topics of CS1336 as
well (if not better) than me, and I’m going to push you toward that goal. You should have
peace of mind moving on in your program because you will be fully prepared to tackle what
the next course in the sequence will throw at you.

THE INFORMATION YOU REALLY CARE ABOUT

Grading Scale:
98-100 A+ 88-89 B+ 78-79 C+ 68-69 D+ Below 60 F
92-97 A 82-87 B 72-77 C 62-67 D
90-91 A- 80-81 B- 70-71 C- 60-61 D

Grade Components: Maintenance Projects (3) 35%
Standalone Projects (2) 25%
Exams (2) 20%
Quizzes/Homework 10%
In-class Projects 10%

General Grade Information: All grades will be available in eLearning. The Weighted Total column
will give you the most accurate information concerning your grade. The weighted total is an
approximation of your grade in the class based on the grades currently in eLearning.

I do not curve grades. Assignments are combined into categories so that a low grade for one
item will not destroy your grade. There are also opportunities provided to help students who
may have done poorly on an assignment or exam.

Grade Disputes: All grade disputes must be reported within 1 week and resolved within 2
weeks of the grade in question being posted in eLearning.

I am responsible for grading your exams. If you have questions regarding your exam, please
contact me. Please note that due to FERPA, I cannot discuss grades via e-mail.

Everything else will be graded by a TA. Please address any grading concerns you have
regarding these grades with the TA. When you email the TA with questions about your
grade, please copy me on the email so that I am aware of the situation and can make
sure it is resolved.

Late Assignments: Homework will not be accepted late. If your assignment is not submitted at
the time of collection in class, it is late and will not be accepted. Please arrive to class on time
in order to submit your homework. I generally collect the homework within the first 15 minutes
of class. Homework is not accepted via e-mail unless I have approved the submission prior to
the due date.

Late Projects:
Projects will be accepted late at the penalty of 5% per hour late (rounded up) for up to 6 hours
past the due date/time.

Page 6 of 9

Page 7 of 9

Projects: Projects will be major programming assignments that supplement recently discussed
topics and should be completed in two to three weeks. Projects are intended to take
approximately 15-20 hours to complete; this includes the design, coding and testing process.
Waiting until a couple of days before the due date to start the project is a bad idea. Not only
does this introduce unnecessary stress into your life, it hardly ever ends well for the student.
Most students score poorly on projects that are built in less than three days.

Projects are individual endeavors and students are not to work in groups on any
project. Students are permitted (and I openly encourage students) to discuss the project.
Feel free to share ideas on the logic, but DO NOT SHARE ANY CODE. All projects will be
submitted in eLearning and will be compared for originality. Any projects that are approximate
or identical copies will be reported to Judicial Affairs and I will accept their decision in regards
to the grade if they believe that academic dishonesty has occurred.

Programming assignments will be graded on a 100-point basis. Not only will your project be
graded on proper execution, but also things like efficiency, implementation and documentation.
Keep in mind that you always want to write code that is easy to understand and is also easy to
maintain. Fewer lines do not necessarily mean a better program. Please use comments
liberally.

You are responsible for testing your project thoroughly before submission. I will not give you
the test cases that will be used for grading before the project is due.

Homework: Homework assignments are generally short coding assignments that can be done in
1-2 hours. These assignments will typically be due 1 week from the date given.

Quizzes: Quizzes may be given in class and are generally unannounced. No make-up quizzes will
be given. Quizzes missed for an excusable reason (with valid documentation) will be
exempted. The exemption of a quiz is at my discretion.

Exams: Exams will cover chapters as listed below in the tentative course schedule. Exams will
include a variety of question types including multiple choice, multiple answer and essay
questions. Students are expected to be able to apply knowledge from all previous chapters in
conjunction with the tested chapters. Exams are not created to make you feel smart; they are
designed for you to demonstrate your understanding of the concepts. A high score on an exam
exhibits a deep understanding of the topics.

An exam should not be missed except for the most extreme circumstances (such as
hospitalization or death of an immediate family member). A make-up exam may be given to
students with a valid reason (and documentation) for missing the exam. Otherwise, the missed
exam grade will be zero. The allowance of a make-up exam is at the sole discretion of the
instructor. Make-up exams must be completed within 48 hours of the date and time of the
exam.

ARE WE THERE YET?

All dates are subject to change at the discretion of the instructor
Date Topic Reading Assignments
8/22 Introduction to CS 2336 Chapters 2 & 3

8/24 Basic Elements of C++
Basic I/O Chapters 4 & 5

8/29 Control Structures
(Selection and Repetition) Chapter 6

8/31 User-Defined Functions Chapter 8

Page 8 of 9

9/5 LABOR DAY (NO CLASS)

9/7 Arrays Chapter 12
(pgs. 812 – 841)

9/12 Pointers Chapter 7 & 9

9/14 Abstract Data Types

Project 1 Due
Chapter 10
Chapter 12

(pgs. 841 – 852)

9/19 Classes Chapter 13
(pgs. 902 – 966)

9/21 Operator Overloading Chapter 11

9/26 Inheritance Chapter 12
(pgs. 867)

9/28 Abstract Classes
Virtual Functions Chapter 14

10/3 Exception Handling
Appendix E

(pgs. 1582 – 1589)
Project 2 Due

10/5 Random File Access
10/10 Mid-Term Exam Chapter 16
10/12 Lists
10/17 Lists
10/19 Stacks Chapter 17
10/24 Queues Chapter 19
10/26 Binary Search Trees Project 3 Due
10/31 Binary Search Trees

11/2 Binary Search Trees eLearning Hash
Resources

11/7 Hashing
11/9 Hashing

11/14 Hashing
Graphs Chapter 20

11/16 Graphs Project 4 Due
11/21 – 11/25 FALL BREAK

11/28 Graphs Chapter 18
11/30 Sorting
12/5 Developing Efficient Algorithms
12/7 Developing Efficient Algorithms
12/10 Project 5 Due

Finals Week Final Exam

Important Dates:
August 22 Classes start
September 5 Labor Day
September 7 Census Day
September 14 Project 1 due
October 5 Project 2 due
October 10 Mid-Term Exam
October 26 Project 3 due
October 27 Last Day to Withdraw
November 16 Project 4 due
December 10 Project 5 due
TBA (Finals Week) Final Exam

Page 9 of 9

The above schedule is subject to change at the discretion of the Professor.

University Policies
For all other University policies, please visit http://go.utdallas.edu/syllabus-policies

http://go.utdallas.edu/syllabus-policies

