EEPE 7V91 Special Topics in Power Electronics Electric Drives in Vehicle Traction Applications

Instructor

Dr. Emine Bostanci, ECSN 3.324, emine.bostanci@utdallas.edu

Office hours: Tuesdays & Thursdays between 5:15 pm-6:00 pm and by appointment

Teaching assistant: Yuan Qi, ECSN 4.520, yxq131230@utdallas.edu,

TA office hours: Wednesdays between 2:00 pm and 3:00 pm and by appointment

Course Description & Contents

Introduction to electrified vehicle powertrain systems

- Topologies; electric vehicles, hybrid and fuel-cell hybrid electric vehicles
- Architectures of hybrid electric vehicles
- Drivetrain components
- Specifications, requirements and challenges

Design, performance analysis and control of electric drive systems

- Fundamental concepts
- Permanent magnet synchronous machine drives
- Induction machine drives
- Switched reluctance machine drives

Future trends

- Vehicle architectures and drivetrain topologies
- High speed vs. high torque electric drive systems

Student Learning Objectives & Outcomes

Upon successful competition of the course, students should be will know:

- Operation and topologies of electrified vehicles
- The state of art of electrified vehicles such as Toyota Prius and Mirai, Nissan Leaf, and Tesla Model S
- Design of electric vehicle propulsion systems
- Electromagnetic fields in electric machines
- Steady state simulation of an electric drive system

Suggested Course Materials

- 1. Ehsani, M. and Gao, Y. and Emadi, A., "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", 2nd Edition, CRC Press LLC, 2009.
- 2. Mi, C. and Masrur, M. A. and Gao, D. W., "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, May 23, 2011.
- 3. Chau, K. T., "Electric Vehicle Machines and Drives: Design, Analysis and Application" Wiley-IEEE Press, August 2015.
- 4. Emadi, A., "Advanced Electric Drive Vehicles", CRC Press, 2014.

Dates	Topics
05.24.16	Introduction
05.26.16 - 05.31.16	Vehicle fundamentals
06.02.16	Electrified vehicle topologies
06.07.16 - 06.09.16	Drive system components
06.14.16	Design examples
	Homework 1: Vehicle design
06.16.16 - 06.21.16	Electric machines in vehicle traction applications and fundamentals of electromagnetics and electric machinery
06.23.16	Midterm: Electrified vehicles: design, configurations and components
06.28.16	Rotating magnetic field theory
06.30.16 - 07.12.16	Permanent magnet synchronous machine drives
	Homework 2: Finite element analysis of Toyota/Prius electric machine
07.14.16 - 07.21.16	Induction machine drives
	Project: Comparisons of electrified drivetrains
07.26.16 - 07.28.16	Switched reluctance machine drives
08.02.16	Future trends
08.04.16	Project presentations
08.09.16 or 08.10.16	Final exam

Assignments & Academic Calendar

Grading Policy

Midterm and final exams: 20% and 30% Homework: 20% Project: 30%

Course & Instructor Policies

Special assignments to get extra credits are possible upon request of students.

Class attendance will not be graded.

Late assignments are not allowed unless the reason is stated and approved in advance.

Comet Creed

"As a Comet, I pledge honesty, integrity, and service in all that I do."

The descriptions and timelines contained in this syllabus are subject to change at the discretion of the instructor.