
CS 6371: Advanced Programming
Languages
Course Information
Title: CS 6371: Advanced Programming Languages
Course Registration Number: 21539
Times: TR 1:00-2:15
Location: ECSS 2.305
Instructor: Dr. Kevin Hamlen (hamlen AT utdallas)
Instructor's Office Hours: TR 2:15-3:15 in ECSS 3.704
Teaching Assistant: TBA
TA's Office Hours: TBA
Course Summary
This course will cover functional and logic programming, concepts of programming
language design, and formal reasoning about programs and programming languages.
The following are the course learning objectives:
1. Functional Programming (ML/OCaml)
2. Logic programming
3. Small-step and large-step operational semantics 
4. Denotational semantics 
5. Fixpoints, fixpoint induction
6. Axiomatic semantics 
7. Type theory 
8. Untyped and typed lambda calculi
9. Partial evaluation, non-determinism
Through taking this course, students will learn the tradeoffs of imperative vs.
non-imperative programming languages, issues involved in designing a programming
language, the role of formal semantics and type-systems in reasoning about programs
and languages, and proof techniques related to programming language design.
The course is open to Ph.D. students and Masters students. Interested undergraduates
should see the instructor for permission to take the course.
Prerequisites: Discrete Structures (CS 3305/5333 or equivalent), Algorithm Analysis
and Data Structures (CS 3345/5343 or equivalent), Automata Theory (CS 4384/5349 or
equivalent). A solid background in all three of these areas will be heavily assumed
throughout the course!
To Prepare for the Course...
STUDENTS MUST ATTEND AT LEAST TWO OF THE FIRST THREE CLASSES. IF
YOU MISS MORE THAN ONE OF THE FIRST THREE CLASSES, YOU WILL NOT BE
PERMITTED TO TAKE THE COURSE. The first three classes will cover functional
programming in the OCaml programming language, which will be the basis for most of
the rest of the course. To better understand the in-class OCaml demos, you should do
the following as preparation:
 Download OCaml from the INRIA website. Feel free to use any version you find

easiest to get running. If you are comfortable with Unix, I recommend using one of

http://utd.edu/locator/ECSS_2.305
http://www.utdallas.edu/~hamlen
http://utd.edu/locator/ECSS_3.704
http://caml.inria.fr/ocaml/release.en.html


the Unix versions. If you prefer Windows, I recommend the Microsoft-based native
Win32 precompiled binary. (Using the Cygwin binaries can be difficult unless you are
already familiar with Cygwin and how to configure it.) A pre-compiled Win32 installer
for OCaml 4 is available at the GitHub repository.

 Once you've successfully installed OCaml, try creating a simple program and
compiling it. OCaml programs are plain text files, just like C/Java programs. Using
your favorite text-editor, create a file named "fib.ml" containing the code found in
section 1.9 of the online OCaml manual. At the Unix or DOS prompt, type one of the
following to compile the program:
 On Unix, type: ocamlc -o fib fib.ml
 At the DOS prompt, type: ocamlc -o fib.exe fib.ml
(Be sure that the ocamlc.exe binary is in your path and that the fib.ml file you
created is in your current directory.) If it compiles successfully, type fib 10 to get it
to print the 10th Fibonacci number.

 Start experimenting with the other examples found on page 3 of the OCaml manual.
The other examples on that page use OCaml in interactive mode (where you use
OCaml sort of like a calculator instead of a compiler). You can either go ahead and
use OCaml in interactive mode or incorporate the examples into your .ml file and
recompile it to see the results.

 OCaml is an extremely powerful language and has many features that we won't be
using in the course. However, in most of the programming assignments you will be
free to use any OCaml language features you wish, so the more OCaml you learn,
the easier you will find the assignments.

Using OCaml from the UTD Server
If you can't get OCaml to work on your personal machine, you can use OCaml on the
UTD CS Department Linux servers. To do so:
 ssh to cs1.utdallas.edu
 at the Unix prompt, type ocaml to enter interactive mode, or type ocamlc to use the

compiler
 to exit interactive mode, at the OCaml prompt type: exit 0;;

Using Prolog from the UTD Server
You can install your own local version of SWI Prolog or you can access the version
installed on the UTD linux servers as follows:
 ssh to cs1.utdallas.edu
 at the Unix prompt, type pl
 to exit Prolog, type control-C then e

Grading
Homework (25%): Homeworks will be assigned approximately once per 1.5 weeks, and
will consist of a mix of programming assignments and written assignments.
Programming assignments will be done in OCaml, Prolog, or possibly Coq. Written
assignments will typically involve discrete math proofs. Homeworks must be turned in at

http://protz.github.com/ocaml-installer
http://protz.github.com/ocaml-installer
http://caml.inria.fr/pub/docs/manual-ocaml/manual003.html#htoc11
http://caml.inria.fr/pub/docs/manual-ocaml/manual003.html
http://www.swi-prolog.org/


the start of class (i.e., by 1:05pm) on the due date. No late homeworks will be
accepted.
Quizzes (15%): On indicated assignment due dates (see the course schedule below),
students will solve one or two problems individually at the start of class as a quiz. The
quiz problems are essentially extra homework problems solved individually in class
without the help of internet solution sets or collaboration with other students. The
quizzes will be closed-book and closed-notes.
Midterm (25%): There will be an in-class midterm exam in class on Thursday, March
5th. The exam will cover functional programming, operational semantics, denotational
semantics, and fixpoints.
Final (35%): The final exam for the course is scheduled for TBA. The exam will be
cumulative, covering all material in the course. Students will have 2 hours and 45
minutes to complete it.
Homework Policy
Students may work individually or together with other students presently enrolled in the
class to complete the assignments, but they must CITE ALL COLLABORATORS AND
ANY OTHER SOURCES OF MATERIAL that they consulted, even if those sources
weren't copied word-for-word. Copying or paraphrasing someone else's work without
citing it is plagiarism, and may result in severe penalties such as an immediate failing
grade for the course and/or expulsion from the computer science program. Therefore,
please cite all sources!
Students may NOT consult solution sets from previous semesters of this course, or
collaborate with students who have such solutions. These sources are off-limits
because such "collaborations" tend to involve simply copying someone else's answer to
a similar homework problem, which does not prepare you for the quizzes and exams.
Texts
The course has no required textbook, but we will make use of several online references:

 OCaml References:
 The OCaml Manual by Xavier Leroy
 Developing Applications With Objective Caml by Emmanuel Chailloux, Pascal

Manoury, and Bruno Pagano; published by O'Reilly France and now available for
online reading

 99 Practice Problems (with solutions) in OCaml
 Coq References:
 The Coq Homepage
 Software Foundations, by B. C. Pierce, C. Casinghino, M. Greenberg, C. Hri�cu,

V. Sjöberg, and B. Yorgey, University of Pennsylvania, 2012.
 Operational & Denotational Semantics References:
 The Formal Semantics of Programming Languages: An Introduction by Glynn

Winskel (placed on reserve at the UTD library)
 Denotational Semantics: A Methodology for Language Development by David

Schmidt, out of print but available online
 Type Theory References:
 Types and Programming Languages by Benjamin C. Pierce

http://caml.inria.fr/pub/docs/manual-ocaml/index.html
http://caml.inria.fr/pub/docs/oreilly-book/
http://ocaml.org/tutorials/99problems.html
http://coq.inria.fr
http://www.cis.upenn.edu/~bcpierce/sf
http://people.cis.ksu.edu/~schmidt/text/densem.html


 Logic Programming Resources:
 Logic, Programming and Prolog (2nd ed.) by Ulf Nilsson and Jan Maluszynski
 SWI Prolog downloads and manuals

Tentative Course Schedule
Date Topic Assignments
Functional Programming

Lecture 1:
Tue 1/13

Course Introduction: Functional
vs. Imperative programming,
type-safe languages, intro to OCaml

Lecture 2:
Thu 1/15 OCaml: Parametric polymorphism

Lecture 3:
Tue 1/20

OCaml: List folding, tail recursion,
exception-handling

Operational Semantics
Lecture 4:
Thu 1/22 Large-step Semantics: Intro

Assignment 1
due 1/22

(OCaml Intro)

Assignment 2
due 1/29
(SIMPL

Interpreter)

Lecture 5:
Tue 1/27

Large-step Semantics: Proof
techniques

Lecture 6:
Thu 1/29 Small-step Semantics

Assignment 3
due 2/10

(Operational
Semantics)

Denotational Semantics

Lecture 7:
Tue 2/3

Denotational Semantics:
Semantic domains and valuation
functions

Lecture 8:
Thu 2/5

Denotational Semantics: Fixed
points

Lecture 9:
Tue 2/10 Fixed-point Induction

Assignment 4
due 2/19

(Fixpoints)
Lecture 10:
Thu 2/12 Semantic Equivalence

Lecture 11:
Tue 2/17

Formal methods: Program-proof
co-development

Type Theory

Lecture 12:
Thu 2/19 Type Theory: Introduction

Assignment 5
due 3/3
(SIMPL

Type-checker)
Lecture 13:
Tue 2/24

Type Theory: Type-soundness,
Progress and Preservation

Lecture 14: Type Theoy: Type-based

http://www.ida.liu.se/~ulfni/lpp/
http://www.swi-prolog.org/


Thu 2/26 Information Flow Security
Lecture 15:
Tue 3/3 Midterm Review

Midterm:
Thu 3/5 Midterm Exam

Untyped Lambda Calculus

Lecture 16:
Tue 3/10

Untyped Lambda Calculus:
Introduction

Assignment 6
due 3/26
(Lambda
calculus)

Lecture 17:
Thu 3/12

Untyped Lambda Calculus:
Encodings and reductions

No Class:
Tue 3/17 No Class: Spring break

No Class:
Thu 3/19 No Class: Spring break

Typed Lambda Calculus
Lecture 18:
Tue 3/24 Simply-typed Lambda Calculus

Lecture 19:
Thu 3/26

System F: Type-inhabitation,
Curry-Howard Isomorphism

Assignment 7
due 4/9

(Functional
SIMPL)

Lecture 20:
Tue 3/31

Summary/Comparison of
Modern Language Features:
Weak vs. strong typing,
type-safety, function evaluation
strategies

Lecture 21:
Thu 4/2

Summary/Comparison of
Modern Language Features:
Hindley-Milner type-inference, type
polymorphism

Logic Programming
Lecture 22:
Tue 4/7 Logic Programming: Part I

Lecture 23:
Thu 4/9 Logic Programming: Part II

Assignment 8
due 4/21
(Prolog)

Lecture 24:
Tue 4/14 Logic Programming: Part III

Formal Verification
Lecture 25:
Thu 4/16

Axiomatic Semantics: Hoare
Logic

Lecture 26: Axiomatic Semantics: Loop Assignment 9



Tue 4/21 invariants due 4/30
(Hoare Logic)

Lecture 27:
Thu 4/23

Axiomatic Semantics: Weakest
precondition, strongest
postcondition

Lecture 28:
Tue 4/28 Final Review

Lecture 29:
Thu 4/30 Final Review


