SYLLABUS¹

CHEM 2330.PAC – INTRODUCTORY ORGANIC CHEMISTRY FOR MEDICAL SCIENCE FALL 2013

Dr. Sergio Cortes SLC 3.509 972-883-6801 scortes@utdallas.edu Hours: TBA

COURSE PREREQUISITES: General Chemistry I and II or equivalent.

COURSE DESCRIPTION: This course covers fundamental concepts and selected material from the traditional two-semester Introductory Organic Chemistry lecture sequence (CHEM 2323 and CHEM 2325). This course is required for students in the Partnership in Advancing Clinical Transition (UT-PACT) Program. This course does not satisfy the basic organic chemistry lecture requirements for pre-health profession students.

LEARNING OBJECTIVES

- Understand the rules of chemical bonding molecular structure, potential energy-stability relationships, Lewis structures, resonance theory, conformational analysis, and stereochemistry.
- Identify centers of reactivity in organic structures, including the names, structures, and basic chemical properties of the most important functional groups.
- Understand the principles of common reaction mechanisms and their energetics.
- Understand the basic concepts of the Lewis and Bronsted-Lowry theories of acids and bases.
- Understand the structural features and chemistry of the most important functional groups, with additional examples from biological systems when relevant.
- Understand the basic concepts of organic transformations and laboratory synthesis, including biosynthetic pathways when appropriate.

REQUIRED TEXTBOOK: John McMurry. <u>Organic Chemistry with Biological Applications. 2nd. ed</u>. Note: Only the regular textbook is required. The Study Guide and Solutions Manual is not required, but strongly recommended (see below).

RECOMMENDED MATERIALS

1. Solutions Manual

Susan McMurry. *Study Guide and Solutions Manual* (ISBN: 0-495-39145-X). This ancillary contains the answers to the problems in the textbook, so it is <u>strongly recommended</u>. You might find it cost-effective to either buy the <u>textbook/solutions manual bundle</u>, or share the cost of one copy with other students, since you won't need it on a regular basis.

- **2. Student recommended reference textbooks** (Current prices range about \$30 \$40, depending on the vendor).
 - **Organic Chemistry I as a Second Language** by David R. Klein. Covers basic principles such as resonance structures, curved arrows, orbital hybridizations, etc.
 - **Organic Chemistry II as a Second Language** by David R. Klein. Coverage of typical concepts presented in second semester courses. Publisher's site: same as above.
 - <u>Get Ready for Organic Chemistry</u> by Joel Karty.

¹ The descriptions and timelines presented in this syllabus are subject to change at the discretion of the Professor.

- **3. Molecular model sets**. If you wish to enhance your ability to visualize 3-dimensional features and movements in organic structures, you may benefit from using a molecular model set. Some reasonably priced kits, yet adequate for student use, can be obtained from the following vendors. Expect to spend at least \$20 for a good kit. If you go too cheap you will end up with junk.
 - Molecular Visions.
 - <u>Indigo</u>. Has Molymod sets for organic chemistry.
 - <u>Amazon.com</u>. Search for "molecular model sets."

CLASS SCHEDULE – SPRING 2013

Note: The test and assessment dates will be announced the first week of class.

TOPICS COVERED	CHAPTER			
Atomic structure and bonding	1			
Polar covalent bonds	2			
Alkanes & conformational analysis	3, 4			
Stereochemistry at tetrahedral centers	5			
TEST # 1 on chapters 1 – 5 and associated class notes				
Overview of organic reactions	6			
Bronsted acid-base chemistry	2			
Organohalides: Nucleophilic substitutions & eliminations	12			
Alkenes and alkynes	7			
Reactions of alkenes & alkynes	8			
TEST # 2 on chapters 6 – 8, 12, and associated class notes				
Aromatic compounds	9			
Structure determination: MS, IR, & UV spectroscopy	10			
Structure determination: NMR spectroscopy	11			
Alcohols, ethers, and related sulfur compounds	13			
TEST # 3 on chapters 9 – 11, 13, and associated class notes				
Aldehydes & ketones: Nucleophilic additions	14			
Carboxylic acids & nitriles	15			
FALL BREAK				
Carboxylic acid derivatives: Nucleophilic acyl substitutions	16			
Carbonyl alpha-substitutions & condensations	17			
Amines & heterocyclic compounds	18			
FINAL EXAM – Comprehensive				

TOPIC DESCRIPTIONS

Chapter 1: **Atomic structure and bonding**. Review of atomic structure and bonding theory, hybridization theory, and types of molecular formulas.

Chapter 2: Polar covalent bonds. Polar covalent bonds, formal charge, and resonance structures.

Chapters 3 & 4: **Alkanes and conformational analysis**. Rules of organic nomenclature, structure, and conformations of alkanes & cycloalkanes.

Chapter 5: **Stereochemistry**. Symmetry and chirality of carbon and heteroatoms, stereoisomerism, rules for specifying configuration, chiral environments and the differentiation of stereoisomers, meso forms.

Chapter 6: Overview of organic reactions. Introduction to molecular transformations and reaction mechanisms, equilibrium and thermodynamics, reaction rates, comparison between laboratory reactions and reactions in biological systems.

Polar mechanisms and Bronsted acid-base chemistry. Structure-acidity relationships and trends.

Chapter 12: Polar mechanisms and Nucleophilic substitutions. Alkyl halides as synthetic precursors, introduction to Lewis acid-base theory, nucleophilic substitutions & eliminations of tetrahedral carbon.

Chapters 7 and 8: **Alkenes and alkynes**. *Pi*-bonds in organic compounds, preparations and reactions of alkenes and alkynes, reactions of conjugated systems, biological additions of radical to alkenes.

Chapters 9: Aromatic compounds. Aromaticity of carbon and heterocyclic compounds, electrophilic and nucleophilic aromatic substitutions, oxidations and reductions, introduction to organic synthesis.

Chapters 10: Structure determination: MS, IR, & UV spectroscopy. Introduction to organic spectroscopy and structure determination techniques, mass spectrometry, infrared and ultraviolet spectroscopy.

Chapters 11: Structure determination: NMR spectroscopy. Proton and carbon nuclear magnetic resonance spectroscopy, special techniques and their uses. Magnetic resonance imaging in medicine.

Chapter 13: **Alcohols, ethers, and related sulfur compounds.** Structure, chemistry, and biological reactions of alcohols, phenols, thiols, ethers, and sulfides. Protection of alcohols in organic synthesis.

Chapters 14: Aldehydes & ketones. Chemistry of carbonyl compounds, nucleophilic additions, Wittig and Grignard reactions, biological reductions, conjugate additions to α , β -unsaturated carbonyl compounds.

Chapters 15: Carboxylic acids & nitriles. Structure and chemistry of carboxylic acids and nitriles, biological acids and the Henderson-Hasselbalch equation, structure-acidity relationships.

Chapters 16: Carboxylic acid derivatives. Structure and nomenclature of carboxylic acid derivatives, nucleophilic acyl substitution reactions, biological carboxylic acid derivatives, organic polymers.

Chapters 17: Carbonyl alpha-substitutions and condensations. Enols and enolate chemistry, tautomerism, alpha- substitutions of carbonyl compounds, aldol condensations and related reactions, Michael and Stork reactions, biological carbonyl condensation reactions.

Chapters 18: Amines & heterocyclic compounds. Structure & chemistry of amines, biological amines and the Henderson-Hasselbalch equation, heterocyclic amines, fused-ring heterocycles,

GRADING

The final grade is based on assignments, short assessments typically covering two chapters each, two of three partial tests, and a comprehensive final exam, as listed below. Additional detail regarding each item will be provided in class:

•	Assignments	15%
---	-------------	-----

 6 of 7 assessments 	20%
• 2 of 3 partial tests	30%

• 2 of 3 partial tests

• Comprehensive final exam 35%

LETTER GRADE EQUIVALENTS OF FINAL PERCENTAGE GRADE

95 - 100 = A+	80 - 84 = B +	65 – 69 = C+	50 – 54 = D+
90 – 94 = A	75 – 79 = B	60 – 64 = C	45 – 49 = D
85 - 89 = A -	70 – 74 = B -	55 – 59 = C-	40 – 44 = D -