CS2340.005 Course Syllabus

Course Information

CS2340.005

Computer Architecture

Spring 2024

Professor Contact Information

Name	John Cole	
Office Phone	972-883-6353	
Office Location	ECSS 4.606	
Email Address	John.Cole@utdallas.edu	
Web Site	www.utdallas.edu/~John.Cole	
Office Hours	See Web site: https://personal.utdallas.edu/~John.Cole/#Office	
Grader	TBA	

Course Modality and Expectations

Instructional Mode	1. In-person. You will be expected to be in class. Attendance is not mandatory but will be taken. Classes will not be presented online unless the University requires it and will not be recorded unless the University requires it.	
Meeting Time	Monday/Wednesday from 1:00 to 2:15 PM	
and Place	Room: ECSS 2.306	
Course Platform	Traditional classroom.	
Expectations	You will attend every class on time, participate when appropriate, and silence your phone and put it somewhere off the desk and our of reach.	
Asynchronous Learning Guidelines	ning None. Unless the University requires it, this class will not be	

General Course Information

Prerequisites	CS1337 and CS2305 with a grade of C or better.	
	This course introduces the concepts of computer architecture by	
Course	going through multiple levels of abstraction, and the numbering	
Description	systems and their basic computations. It focuses on the instruction-	
_	set architecture of the MIPS machine, including MIPS assembly	

	programming, translation between MIPS and C, and between MIPS and machine code. General topics include performance calculation, processor datapath, pipelining, and memory hierarchy. That was the catalog description. This course teaches you how computers work internally, including how to write in assembly language, how to create abstractions in an environment where there are none, and the relationship between machine code, assembly language, and high-level languages, specifically C++. You will also
	learn how memory works, how to evaluate processor performance, and much more.
	After successful completion of this course:
Learning Outcomes	 Be able to write a fully functional, stand-alone medium size assembly language program Have an ability to represent numbers in and convert between decimal, binary, and hexadecimal and perform calculations using 2's complement arithmetic Understand the basic model of a computer including the datapath, control, memory, and I/O components Be able to program efficiently in an assembly level instruction set, including the use of addressing modes and data types Understand the role of compilers, assemblers, and linkers and how programs are translated into machine language and executed Be able to demonstrate comprehension of a pipelined architectures including datapaths and hazards Be able to demonstrate comprehension of computer performance measures and their estimation Understand the memory hierarchy including caches and virtual memory
Required Text	Computer Organization and Design - The Hardware/Software Interface – 6 th Edition, Patterson and Hennessey, Morgan-Kaufmann, 2013. ISBN-13: 978-0128201091. Note: Make sure that you get the correct edition and processor (MIPS).
Required Course Materials	This course will involve coding in the MIPS assembly language using MARS (MIPS Assembler and Runtime Simulator). Get it free here: http://courses.missouristate.edu/KenVollmar/mars/ The MARS simulator's help screen is very useful.

Course Policies

Cradina Critaria	Major assignments 35%	A=93-100
	Tests (3) 60%	A-=90-92
Grading Criteria	Quizzes 5%	B+=87-89
	Attendance: 0%	B=83-86

	B-=80-82		
	C+=77-79		
	C=73-76		
	C-=70-72		
	F=below 70		
Make up Evene	Not allowed except for documented serious medical reasons. "I		
Make-up Exams	forgot to sign up with the testing center" is not a medical reason.		
Extra-Credit Work	None given. Please do not ask.		
	Reduction of 25 percent per day or partial day for any late		
Late Work	submissions unless otherwise stated in the assignment. That is		
Late Work	if the assignment is worth 100 points, you will lose 25 points per		
	day, in addition to points lost because of the quality of work.		
	I do not curve individual assignments, but I may curve the ent		
Grade	course a little. Do not count on this. Do your best work.		
Information	Grades will be posted in eLearning and you can use the weights		
	above to see where you stand.		
Who Grades	Online quizzes are auto-graded by eLearning. Your instructor		
What	3 3 1 3		
	If you have an issue with your grade on a test or homework, talk		
Grade Disputes	to me. You have one week after a grade is posted to do so.		
	Do not come in at the end of the semester looking for a better		
	grade on the first test.		
	You may be given take-home quizzes in eLearning. Often,		
	these will be due before the lecture that covers the material.		
Online Quizzes	The purpose is to get you to read the material before you hear it		
	in class. You may also be given in-class work to complete.		
	These may not be made up if you miss them, and late work is		
	not accepted.		

Class Attendance

The University's attendance policy requirement is that individual faculty set their course attendance requirements. Computer Science Department policy is that if you miss three consecutive classes your grade will drop one letter grade. Missing four in a row is failing.

Regular and punctual class attendance is expected regardless of modality. Students who fail to attend class regularly are inviting scholastic difficulty. In some courses, instructors may have special attendance requirements; these should be made known to students during the first week of classes. These attendance requirements will not be used as part of grading (see Class Participation below for grading information).

Class Participation

Regular class participation is expected regardless of course modality. Students who fail to participate in class regularly are inviting scholastic difficulty. Participation includes engaging in group or other activities during class that solicit your feedback on homework assignments, readings, or materials covered in the lectures (and/or labs). Class participation is documented by faculty. Successful participation is defined as consistently adhering to University requirements, as presented in this syllabus. Failure to comply with these University requirements is a violation of the Student Code of Conduct.

Class Recordings

Students are expected to follow appropriate University policies and maintain the security of passwords used to access recorded lectures. Unless the Office of Student AccessAbility has approved the student to record the instruction, students are expressly prohibited from recording any part of this course. Recordings may not be published, reproduced, or shared with those not in the class, or uploaded to other online environments except to implement an approved Office of Student AccessAbility accommodation. Failure to comply with these University requirements is a violation of the Student Code of Conduct.

NOTE: if the instructor records any part of the course, then the instructor will need to use the following syllabus statement:

The instructor may record meetings of this course. Any recordings will be available to all students registered for this class as they are intended to supplement the classroom experience. Students are expected to follow appropriate University policies and maintain the security of passwords used to access recorded lectures. Unless the Office of Student AccessAbility has approved the student to record the instruction, students are expressly prohibited from recording any part of this course. Recordings may not be published, reproduced, or shared with those not in the class, or uploaded to other online environments except to implement an approved Office of Student AccessAbility accommodation. If the instructor or a UTD school/department/office plans any other uses for the recordings, consent of the students identifiable in the recordings is required prior to such use unless an exception is allowed by law. Failure to comply with these University requirements is a violation of the Student Code of Conduct.

Class Materials

The instructor may provide class materials that will be made available to all students registered for this class as they are intended to supplement the classroom experience. These materials may be downloaded during the course, however, these materials are for registered students' use only. Classroom

materials may not be reproduced or shared with those not in class, or uploaded to other online environments except to implement an approved Office of Student AccessAbility accommodation. Failure to comply with these University requirements is a violation of the Student Code of Conduct.

Tentative schedule of topics. This is subject to change, and an updated version can be found at https://personal.utdallas.edu/~John.Cole/2024Spring/CS2340Spring2024Schedule.htm

Week	Date	Topic	Reading
1	Jan 17	Syllabus and instructor Web site review	Syllabus from coursebook
2	Jan 22	Introduction to Computer Organization	Ch. 1.1-1.5
	Jan 24	Introduction to Assembly Language Programming	Appendix A
3	Jan 29	Performance evaluation, Amdahl's law	Ch. 1.6, 1.9
	Jan 31	Data Representations: Binary, Hexadecimal, Octal	Ch. 2.3
4	Feb 5	Number Representations: signed, floating point	Ch. 2.4
	Feb 7	Instruction Representation	Ch. 2.5
5	Feb 12	Assembly operations: Load, Store, Add, Subtract, etc. Addressing modes.	Ch. 2.2
	Feb 14	Comparing, Branching, Looping	Ch. 2.7
6	Feb 19	Bit and byte manipulation, etc.	Ch. 2.6
	Feb 21	Test 1 Review	
7	Feb 26	Test 1 in the Testing Center	
	Feb 28	Subroutines in Assembly Language	Ch 2.8, A.6
8	Mar 4	Memory Allocation and the Heap	Slides
	Mar 6	Integer Arithmetic	Ch 3.1-3.4
9	Mar 11	Spring Break – No classes	
	Mar 13	Spring Break – No classes	
10	Mar 18	Addressing Modes and System Software	Ch. 2.12-2.13
	Mar 20	Floating Point Arithmetic	Ch. 3.5
11	Mar 25	File Input & Output	Slides
	Mar 27	Memory-Mapped I/O	Slides
		Interrupts and Exceptions	Ch. 4.9, A.7
12	Apr 1	Macros	Slides
	Apr 3	Test 2 Review	
13	Apr 8	Test 2 in the Testing Center	
	Apr 10	Processor: Datapath & Control	Ch. 4.5
14	Apr 15	Processor: Pipelining	Ch. 4.6-4.8

	TBA	Test 3 in the testing center.	
	May 1	Test Review	
16	Apr 29	Comparing ISAs	Ch. 2.16, 2.17, Slides
	Apr 24	Virtual memory	Ch. 5.4-5.7
15	Apr 22	Introduction to memory hierarchy	Ch. 5.1-5.3
	Apr 17	Advanced Instruction Level Parallelism	Ch. 4.11

Off-campus Instruction and Course Activities

Not Applicable.

Comet Creed

This creed was voted on by the UT Dallas student body in 2014. It is a standard that Comets choose to live by and encourage others to do the same:

"As a Comet, I pledge honesty, integrity, and service in all that I do."

Academic Support Resources

The information contained in the following link lists the University's academic support resources for all students.

Please see http://go.utdallas.edu/academic-support-resources.

UT Dallas Syllabus Policies and Procedures

The information contained in the following link constitutes the University's policies and procedures segment of the course syllabus.

Please go to http://go.utdallas.edu/syllabus-policies for these policies.

The descriptions and timelines contained in this syllabus are subject to change at the discretion of the Professor.