CS2340.005 Course Syllabus

Course Information

CS2340.005

Computer Architecture

Spring 2023

Professor Contact Information

Name	John Cole
Office Phone	972-883-6353
Office Location	Residence Hall West 2.401
Email Address	John.Cole@utdallas.edu
Web Site	www.utdallas.edu/~John.Cole
Office Hours	See Web site: https://personal.utdallas.edu/~John.Cole/#Office

Course Modality and Expectations

	una Expediations	
Instructional Mode	1. In-person. You will be expected to be in class. Attendance is not mandatory but will be taken. Classes will not be presented online unless the University requires it and will not be recorded unless the University requires it.	
Meeting Time	Monday/Wednesday from 1:00 to 2:15 PM	
and Place	Room: RH West 2.401	
Course Platform	Traditional classroom.	
Expectations	You will attend every class on time, participate when appropriate, and silence your phone and put it somewhere off the desk and out of reach.	
Asynchronous Learning Guidelines	None. Unless the University requires it, this class will not be offered asynchronously.	

General Course Information

Prerequisites	CS1337 and CS2305 with a grade of C or better.	
Course	This course introduces the concepts of computer architecture by	
	going through multiple levels of abstraction, and the numbering	
Description	systems and their basic computations. It focuses on the instruction-	
Description	set architecture of the MIPS machine, including MIPS assembly	
	programming, translation between MIPS and C, and between MIPS	

-			
	and machine code. General topics include performance calculation, processor datapath, pipelining, and memory hierarchy.		
Learning Outcomes	After successful completion of this course: 1. Students should be able to convert numbers between bases 2, 10, and 16 and perform binary 2's complement arithmetic calculations. 2. Students will create and debug Assembly language programs that include (a) integer operations, (b) floating-point operations, (c) control structures, (d) functions and macros, (e) static memory allocation for varied data types, (f) dynamic memory allocation, (g) standard I/O, and (h) memory-mapped I/O. 3. Students will critique programs for efficient use of data types, addressing modes, and instructions, as well as for readability and maintainability using a provided rubric. 4. Students will calculate computer performance measures. Students will use performance merics to evaluate a chosen CPU architecture. Students will define terms used in CPU technical brochures. 5. Students will differentiate between systems programs such as compilers, assemblers, linkers, and loaders, and explain how they are used by operating systems to convert programs into machine language to be executed. 6. Students will explain the flow of information through a computer's core components, including the datapath, control, memory, and I/O. 7. Students will diagram the flow of data, code, and control signals through a pipelined architecture. Students will evaluate the presence or absence of hazards in a pipelined architecture, and explain how the hazards could be avoided. 8. Students will diagram and explain the memory hierarchy, including caches and virtual memory. Students will explain the different memory technologies used in computers. 9. Students will contrast the four types of parallelism.		
Required Text			
Required Course Materials	This course will involve coding in the MIPS assembly language using MARS (MIPS Assembler and Runtime Simulator). Get it free here: http://courses.missouristate.edu/KenVollmar/mars/		

The MARS simulator's help screen is very useful.

Course Policies

Grading Criteria	Major assignments 35% Tests (3) 60% Quizzes 5% Attendance: 0%	A=93-100 A-=90-92 B+=87-89 B=83-86 B-=80-82 C+=77-79 C=73-76 C-=70-72 F=below 70	
Make-up Exams	Not allowed except for documented serious medical reasons. "I forgot to sign up with the testing center" is not a medical reason.		
Extra-Credit Work	None given. Please do not ask.		
Late Work	Reduction of 25 percent per day or partial day for any late submissions unless otherwise stated in the assignment. That is, if the assignment is worth 100 points, you will lose 25 points per day, in addition to points lost because of the quality of work.		
Grade Information	I do not curve individual assignments, but I may curve the entire course a little. Do not count on this. Do your best work. Grades will be posted in eLearning and you can use the weights above to see where you stand.		
Who Grades What	Online quizzes are auto-graded by eLearning. I grade tests and		
Grade Disputes	If you have an issue with your grade on a test or homework, talk		
Online Quizzes	You may be given quizzes in eLearning. Often, these will be due before the lecture that covers the material. The purpose is to get you to read the material before you hear it in class. You may also be given in-class work to complete. These may not be made up if you miss them, and late work is not accepted.		

Class Attendance

The University's attendance policy requirement is that individual faculty set their course attendance requirements. Computer Science Department policy is that if you miss three consecutive classes your grade will drop one letter grade. Missing four in a row is failing.

Regular and punctual class attendance is expected regardless of modality. Students who fail to attend class regularly are inviting scholastic difficulty. In some courses, instructors may have special attendance requirements; these should be made known to students during the first week of classes. These attendance requirements will not be used as part of grading (see Class Participation below for grading information).

Class Participation

Regular class participation is expected regardless of course modality. Students who fail to participate in class regularly are inviting scholastic difficulty. Participation includes engaging in group or other activities during class that solicit your feedback on homework assignments, readings, or materials covered in the lectures (and/or labs). Class participation is documented by faculty. Successful participation is defined as consistently adhering to University requirements, as presented in this syllabus. Failure to comply with these University requirements is a violation of the Student Code of Conduct.

Class Recordings

Students are expected to follow appropriate University policies and maintain the security of passwords used to access recorded lectures. Unless the Office of Student AccessAbility has approved the student to record the instruction, students are expressly prohibited from recording any part of this course. Recordings may not be published, reproduced, or shared with those not in the class, or uploaded to other online environments except to implement an approved Office of Student AccessAbility accommodation. Failure to comply with these University requirements is a violation of the Student Code of Conduct.

NOTE: if the instructor records any part of the course, then the instructor will need to use the following syllabus statement:

The instructor may record meetings of this course. Any recordings will be available to all students registered for this class as they are intended to supplement the classroom experience. Students are expected to follow appropriate University policies and maintain the security of passwords used to access recorded lectures. Unless the Office of Student AccessAbility has approved the student to record the instruction, students are expressly prohibited from recording any part of this course. Recordings may not be published, reproduced, or shared with those not in the class, or uploaded to other online environments except to implement an approved Office of Student AccessAbility accommodation. If the instructor or a UTD school/department/office plans any other uses for the recordings, consent of the students identifiable in the recordings is required prior to such use unless an exception is allowed by law. Failure to comply with these University requirements is a violation of the Student Code of Conduct.

Class Materials

The instructor may provide class materials that will be made available to all students registered for this class as they are intended to supplement the classroom experience. These materials may be downloaded during the course, however, these materials are for registered students' use only. Classroom materials may not be reproduced or shared with those not in class, or uploaded to other online environments except to implement an approved Office of Student AccessAbility accommodation. Failure to comply with these University requirements is a violation of the Student Code of Conduct.

be four	nd at	lule of topics. This is subject to change, and an upda .utdallas.edu/~John.Cole/2022Fall/CS2340Fall2022S	
Week	Date	Topic	Reading
1	Jan 18	Syllabus and instructor Web site review Introduction to Computer Organization	Syllabus from coursebook
2	Jan 23	Introduction to Computer Organization	Ch. 1
	Jan 25	Introduction to Assembly Language Programming	Appendix A
3	Jan 30	Assembly Language Programming Performance evaluation, Amdahl's law	Appendix A Ch. 1.6, 1.9
	Feb 1	Data Representations: Binary, Hexadecimal, Octal Number Representations: signed, floating point	Ch. 2.3 Ch. 2.4
4	Feb 6	Addressing modes	Ch. 2.10
	Feb 8	Assembly operations: Load, Store, Add, Subtract, etc.	Ch. 2.2
5	Feb 13	Instruction Representation; pseudo-instructions	Ch. 2.5
	Feb 15	Comparing, Branching, Looping	Ch. 2.7
6	Feb 20	Bit and byte manipulation, etc.	Ch. 2.6
	Feb 22	Test 1 Review	
7	Feb 27	Test 1	
	Mar 1	Subroutines in Assembly Language	Ch 2.8, A.6
8	Mar 6	Memory Allocation and the Heap	Slides
	Mar 8	Addressing modes & System Software	Ch 2.12-13
9	Mar 13	Spring Break	
	Mar 15	Spring Break	

		Test 3 TBA	
	May 3	Test 3 Review	
16	May 1	Comparing ISAs	Ch 2.16, 2.17
	Apr 26	Virtual memory	Ch. 5.4-5.7s
15	Apr 24	Introduction to memory hierarchy	Ch. 5.1-5.3
	Apr 19	Advanced Instruction Level Parallelism	Ch. 4.11
14	Apr 17	Processor: Pipelined Datapath	Ch. 4.6-4.8
	Apr 12	Processor: Datapath & Control Processor: Pipelining	Ch. 4.1-4.5
13	Apr 10	Test 2	
	Apr 5	Test 2 Review	
12	Apr 3	Memory-mapped I/O	Ch. A.8
	Mar 29	Interrupts and Exceptions	CH. 4.10
11	Mar 27	Input & Output	Ch. 4.9, A.7
	Mar 22	Floating Point Arithmetic	Ch 3.5
10	Mar 20	Integer Arithmetic	Ch 3.1-3.4

Off-campus Instruction and Course Activities

Not Applicable.

Comet Creed

This creed was voted on by the UT Dallas student body in 2014. It is a standard that Comets choose to live by and encourage others to do the same:

"As a Comet, I pledge honesty, integrity, and service in all that I do."

Academic Support Resources

The information contained in the following link lists the University's academic support resources for all students.

Please see http://go.utdallas.edu/academic-support-resources.

UT Dallas Syllabus Policies and Procedures

The information contained in the following link constitutes the University's policies and procedures segment of the course syllabus.

Please go to http://go.utdallas.edu/syllabus-policies for these policies.

The descriptions and timelines contained in this syllabus are subject to change at the discretion of the Professor.