CS2340.005 Course Syllabus

Course Information

CS2340.005

Computer Architecture

Spring 2022

Professor Contact Information

Name	John Cole
Office Phone	972-883-6353
Office Location	ECSS 4.606
Email Address	John.Cole@utdallas.edu
Web Site	www.utdallas.edu/~John.Cole
Office Hours	See Web site: https://personal.utdallas.edu/~John.Cole/#Office

Course Modality and Expectations

Instructional Mode	In-person. You will be expected to be in class. Attendance will be taken.	
Meeting Time and Place	Monday/Wednesday from 1:00 PM to 2:15 PM Room: ECS West 1.315	
Course Platform	Traditional classroom	
Expectations	You will attend every class, participate when appropriate, and silence your phone and put it somewhere off the desk and out of reach.	
Asynchronous Learning Guidelines	None. Unless the University requires it, this class will not be offered asynchronously.	

General Course Information

Prerequisites	CS1337 and CS2305 with a grade of C or better.	
Course Description	This course introduces the concepts of computer architecture by going through multiple levels of abstraction, and the numbering systems and their basic computations. It focuses on the instruction-set architecture of the MIPS machine, including MIPS assembly programming, translation between MIPS and C, and between MIPS and machine code. General topics include performance calculation, processor datapath, pipelining, and memory hierarchy.	

After successful completion of this course: 1. Students should be able to convert numbers between bases 2, 10, and 16 and perform binary 2's complement arithmetic calculations. 2. Students will create and debug Assembly language programs that include (a) integer operations, (b) floating-point operations, (c) control structures, (d) functions and macros, (e) static memory allocation for varied data types, (f) dynamic memory allocation, (g) standard I/O, and (h) memory-mapped I/O. 3. Students will critique programs for efficient use of data types, addressing modes, and instructions, as well as for readability and maintainability using a provided rubric. 4. Students will calculate computer performance measures. Students will use performance metrics to evaluate a chosen CPU architecture. Students will define terms used in CPU Learning technical brochures. **Outcomes** 5. Students will differentiate between systems programs such as compilers, assemblers, linkers, and loaders, and explain how they are used by operating systems to convert programs into machine language to be executed. 6. Students will explain the flow of information through a computer's core components, including the datapath, control, memory, and I/O. 7. Students will diagram the flow of data, code, and control signals through a pipelined architecture. Students will evaluate the presence or absence of hazards in a pipelined architecture, and explain how the hazards could be avoided. 8. Students will diagram and explain the memory hierarchy, including caches and virtual memory. Students will explain the different memory technologies used in computers. 9. Students will contrast the four types of parallelism. Computer Organization and Design - The Hardware/Software Required *Interface* – 6th Edition, Patterson and Hennessey, Morgan-Kaufmann, Text 2013. ISBN-13: 978-0124077263. Note: insure that you get the correct edition and processor (MIPS). This course will involve coding in the MIPS assembly language using Required MARS (MIPS Assembler and Runtime Simulator). Get it free here: Course http://courses.missouristate.edu/KenVollmar/mars/ **Materials** The MARS simulator's help screen is very useful.

Course Policies

Course Policies		
Grading Criteria	Major assignments 25% Tests (3) 70% Quizzes 5% Attendance: 0%	A=93-100 A-=90-92 B+=87-89 B=83-86 B-=80-82 C+=77-79 C=73-76 C-=70-72 F=below 70
Make-up Exams	Not allowed except for documented s	serious medical reasons.
Extra-Credit Work	None given. Please do not ask.	
Late Work	1 point reduction in grade per minute after the deadline up to 25 points. After that, 25 points per day or partial day for any late submissions unless otherwise stated in the assignment. That is, if the assignment is worth 100 points, you will lose 25 points per day, in addition to points lost because of the quality of work.	
Grade Information	I do not curve individual assignments, but I may curve the entire course a little. Do not count on this. Do your best work. Grades will be posted in eLearning and you can use the weights above to see where you stand.	
Who Grades What	The grader grades all homework and assignments. Online quizzes are auto-graded by eLearning. I grade tests.	
Grade Disputes	If you have an issue with a test, talk issue with an assignment, talk with the you e-mail the grader about an assign grades become final one week after come in at the end of the semester to the first test.	ne grader first, then me. If Inment, copy me. All they are posted. Do not
Online Quizzes	You may be given quizzes in eLearn due before the lecture that covers the to get you to read the material before These may not be made up if you minot accepted.	ne material. The purpose is you hear it in class.

Class Attendance

The University's attendance policy requirement is that individual faculty set their course attendance requirements. Computer Science Department policy is that if you miss three consecutive classes your grade will drop one letter grade. Missing four in a row is failing.

Regular and punctual class attendance is expected regardless of modality. Students who fail to attend class regularly are inviting scholastic difficulty. In some courses, instructors may have special attendance requirements; these should be made known to students during the first week of classes. These attendance requirements will not be used as part of grading (see Class Participation below for grading information).

Class Participation

Regular class participation is expected regardless of course modality. Students who fail to participate in class regularly are inviting scholastic difficulty. Participation includes engaging in group or other activities during class that solicit your feedback on homework assignments, readings, or materials covered in the lectures (and/or labs). Class participation is documented by faculty. Successful participation is defined as consistently adhering to University requirements, as presented in this syllabus. Failure to comply with these University requirements is a violation of the Student Code of Conduct.

Class Recordings

Students are expected to follow appropriate University policies and maintain the security of passwords used to access recorded lectures. Unless the Office of Student AccessAbility has approved the student to record the instruction, students are expressly prohibited from recording any part of this course. Recordings may not be published, reproduced, or shared with those not in the class, or uploaded to other online environments except to implement an approved Office of Student AccessAbility accommodation. Failure to comply with these University requirements is a violation of the Student Code of Conduct.

NOTE: if the instructor records any part of the course, then the instructor will need to use the following syllabus statement:

The instructor may record meetings of this course. Any recordings will be available to all students registered for this class as they are intended to supplement the classroom experience. Students are expected to follow appropriate University policies and maintain the security of passwords used to access recorded lectures. Unless the Office of Student AccessAbility has approved the student to record the instruction, students are expressly prohibited from recording any part of this course. Recordings may not be published, reproduced, or shared with those not in the class, or uploaded to other online environments except to implement an approved Office of Student AccessAbility accommodation. If the instructor or a UTD school/department/office plans any other uses for the recordings, consent of the students identifiable in the recordings is required prior to such use unless an exception is allowed by law. Failure to comply with these University requirements is a violation of the Student Code of Conduct.

Class Materials

The instructor may provide class materials that will be made available to all students registered for this class as they are intended to supplement the classroom experience. These materials may be downloaded during the course, however, these materials are for registered students' use only. Classroom materials may not be reproduced or shared with those not in class, or uploaded to other online environments except to implement an approved Office of Student AccessAbility accommodation. Failure to comply with these University requirements is a violation of the Student Code of Conduct.

be fou	nd at	dule of topics. This is subject to change, and an upo	
Week	Date	Topic	Reading
1	Jan 19	Syllabus and instructor Web site review	Syllabus from coursebook
2	Jan 24	Introduction to Computer Organization	Ch. 1
	Jan 26	Introduction to Assembly Language Programming	Appendix A
3	Jan 31	Performance evaluation, Amdahl's law	Ch. 1.6, 1.9
	Feb 2	Data Representations: Binary, Hexadecimal, Octal	Ch. 2.3
4	Feb 7	Number Representations: signed, floating point	Ch. 2.4
	Feb 9	Instruction Representation	Ch. 2.5
5	Feb 14	Assembly operations: Load, Store, Add, Subtract, etc.	Ch. 2.2
	Feb 16	Comparing, Branching, Looping	Ch. 2.7
6	Feb 21	Bit and byte manipulation, etc.	Ch. 2.6
	Feb 23	Test 1 Review	
7	Feb 28	Test 1	
	Mar 2	Subroutines in Assembly Language	Ch 2.8, A.6
8	Mar 7	Comparing ISAs	Ch 2.16, 2.17
	Mar 9	Addressing modes & System software	Ch 2.10, 2.12-13
9	Mar 14	Integer Arithmetic	Ch 3.1-3.4
	Mar 16	Floating Point Arithmetic	Ch 3.5
10	Mar 21	Spring Break – No classes	
	Mar 23	Spring Break – No classes	

11	Mar 28	Input & Output	
11		1 1	Ch 40 47
	Mar 30	Interrupts and Exceptions	Ch. 4.9, A.7
12	Apr 4	Processor: Datapath & Control	Ch. 4.1-4.4
	Apr 6	Test 2 Review	
13	Apr 11	Test 2	
	Apr 13	Processor: Pipelining	Ch. 4.5
14	Apr 18	Processor: Pipelined Datapath	Ch. 4.6-4.8
	Apr 20	Advanced Instruction Level Parallelism	Ch. 4.10
15	Apr 25	Introduction to memory hierarchy	Ch. 5.1-5.3
	Apr 27	Virtual memory	Ch. 5.4-5.7s
16	May 2		
	May 4	Test Review	
	TBA	Test 3	

Off-campus Instruction and Course Activities

Not Applicable.

Comet Creed

This creed was voted on by the UT Dallas student body in 2014. It is a standard that Comets choose to live by and encourage others to do the same:

"As a Comet, I pledge honesty, integrity, and service in all that I do."

Academic Support Resources

The information contained in the following link lists the University's academic support resources for all students.

Please see http://go.utdallas.edu/academic-support-resources.

UT Dallas Syllabus Policies and Procedures

The information contained in the following link constitutes the University's policies and procedures segment of the course syllabus.

Please go to http://go.utdallas.edu/syllabus-policies for these policies.

The descriptions and timelines contained in this syllabus are subject to change at the discretion of the Professor.