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Questions 

1. What are the key issues in selecting a forecast model?  

2. Given an institution’s mission and student 
characteristics, what are the appropriate forecasting 
models for the institution?  

3. What are the central issues with the use of 
applications, admissions data to forecast new 
enrollment?   

4. What are the effects of continuing students, stop-outs 
and graduates on enrollment forecasts?  

5. How can enrollment forecasts be utilized to set 
enrollment targets? 

 



Forecasting Questions* 
1. The Time Horizon: forecasts are generated for some point in 

time that vary from immediate to long-term. 

2. Data Patterns: trend, cyclic, seasonal or a combination of 
these.  

3. Associated Costs of: model development, procedures, 
complexity, data gathering, operational. 

4. Degree of Accuracy desired or necessary. 

5. Availability of data that is sufficient, accurate and timely 

6. Ease of Operation and Understanding (administrators 
should be able to understand how the forecasts are made). 

 

* see Bowerman, O’Connell and Koehler, 2005. 



 
 

“Predictions are best made in a stable system where 
 

 trends are well established and rates of change for all 
 

 variables are known. It is even better if that stable  
 

system is nested in a stable environment.” 
 

FAT CHANCE 
 
 
 



 
“The farther away the projected time is from the  

 

present the more likely the projection will err by  
 

some degree. This is especially so when the  
 

environment is turbulent, the prediction involves 
 

 many variables, and/or the system is undergoing  
 

continuous change.”  
 



DIMENSIONS OF CHANGE 
 

The Source of Change: Internal to External 
 

The Duration of Change : Short to Long 
 

Magnitude of Change : Small to Large 
 

Frequency of Change : Single or Multiple 
 

The Intensity of Change   
 

The degree of Connectivity of Changes  
 

The Threshold Where the Change makes a difference  
 

Impact of Change(e.g., immediate or delayed) 
 

And of course the  

System’s Response to Change 
 

 



Where E = enrollment 
 

I = Input Streams 
(for example, First Time In College, Transfers, Masters Students and Doctoral Students) 

 

Where O = Output Streams  
(Graduates, Drop-outs, Stop-outs, Transfers-out) 

 

And t = time 

Et = It  + (C- O) t 

Where C = Continuing Students 



Et+1 = It+1  + (C- O) t+1 

 
So enrollment at time Et+1  will be greater than 
enrollment at time E if the sum of new students and 
continuing students is positive.  
 
Increasing new students and decreasing the 
proportion who leave (retention) are both drivers of 
enrollment gains. 

Retained students make up the highest percentage 
of enrollment. 

Et = It  + (C- O) t 



Two “Simple” Steps 
 

1. Accurately estimate the Number of 
Continuing Students (C-O) 

 
2. Accurately estimate the Number of New 

Students (I) 
 

With enough lead time to allow organizational 
adaptations should they be needed. 



Fall Enrollment 
(time 1) 

Graduates 
Drop-outs 
Stop-outs 

Spring 
Enrollment 

Fall Enrollment 
(time 2) 

Graduates 
Drop-outs 
Stop-outs 

New 
Students 

New 
Students 

Fall 

Continuing Continuing 

New 
Students 
Summer 

Enrollment: Inflow and Outflow 

Retained students make up the highest percentage of enrollment. 
 



> 

Fall Enrollment 
(time 1) 

(63.5% continue to 
Next fall “t2”) 

Graduates 
Drop-outs 
Stop-outs 

Spring 
Enrollment 

 

Fall Enrollment 
(time 2) 

Graduates 
Drop-outs 
Stop-outs 

New 
Students 

(7.5%) 
6% continue 
to  next fall* 

 

New 
Students 

Fall 
(28%)* 

Continuing Continuing 

New 
Students 
Summer 

(2%)* 

Enrollment: Inflow and Outflow 

Retained students make up the highest percentage of enrollment. 
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 The correlation between fall-to-fall persistence and spring-to-next fall persistence is .97. 



CONTINUING STUDENTS 
 

1. Establish if  persistence is a stable element or if there have been 
changes in persistence. 

2. Establish the appropriate data unit(s). 

Fall-to-Fall  2008-2009 2009-2010 2010-2011 2011-2012  

Academic 
Persistence 61.50% 62.00% 62.50% 63.50% 

          



Potential Population of New Students (q) 

Students request/receive information (p1 ) 
 

Students who Apply (p2 ) 

Students who are Admitted (p3 ) 

Students who Enroll (p4 ) 

1 2 3 4
 qp p p p

See Wiorkowski, John and Lawrence J. Redlinger, “The Statistical  Anatomy of Academic Enrollment Data.” 



1 2 3 4
 qp p p p

This equation (1) conforms to the facts that if we: 
• Increase initial exposure ( i. e. increasing the value of ) and/or  
•Increase the probability of requesting information, and/or 
• Increase the probability of applying for admission, and/or 
•Increase the probability of actually being admitted and/or 
•Increase the probability of enrolling 

Then the average new enrollment will increase.   
 
Over time, efforts in these segments are not likely to be constant. Varying efforts 
are made to increase exposure, increase or sustain student response, student 
application, and the enrollment of admitted students ( the process of admission is 
sometimes manipulated to make the probability of admission increase or 
decrease).  

 

 See Wiorkowski, John and Lawrence J. Redlinger, “The Statistical  Anatomy of Academic Enrollment Data.”  
 



Fall 2012 Applications, Admits and Enrolled counts as of September 6, 2012 

  Applied Admitted * Enrolled 
% Applied to 

Admitted 
% Admitted 
to Enrolled 

% Applied to 
Enrolled 

Freshmen -- FTIC** 7,081 3,941 1,519 55.7% 38.5% 21.5% 

Freshmen Transfers & Transients 660 283 149 42.9% 52.7% 22.6% 

Sophomore Transfers & Transients 1,520 1,106 769 72.8% 69.5% 50.6% 

Junior Transfers & Transients 1,682 1,312 927 78.0% 70.7% 55.1% 

Senior Transfers & Transients 335 209 143 62.4% 68.4% 42.7% 

Graduate Non-Degree Seeking & 2nd Bacc. 689 445 284 64.6% 63.8% 41.2% 

Graduate Degree Seeking 11,706 6,449 2,578 55.1% 40.0% 22.0% 

TOTAL 23,673 13,745 6,369 58.1% 46.3% 26.9% 

* Includes admitted applications that were later cancelled.         

** Includes FTIC "sophomores" and "juniors" 

Establish Input Streams 
Example: Fall 2012  



APPLICATIONS: PERIODICITY 
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FR TR Transient Graduate

Daily level data are very  "noisy” 
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FTIC Applications by Week for Fall 2012  SMOOTHING THE DATA 
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Additional Comments 

• Scan the internal environment  

– Housing deposits 

– Orientation Registrations 

– I-20 Applications  

• Scan external environment  

– Universities you have identified (e.g. by SAT/ACT 
scores) as alternatives to your university. Have they 
changed their goals, policies, financial aid packages?  

– Feeder high school demographics 



Selected References 

• Bowerman, Bruce L.,  Richard T. O’Connell and Anne B. Koehler, Forecasting, Time Series, and Regression: 
An Applied Approach. 4th ed. 2005. Brooks/Cole a division of Thomson Learning, Inc. ISBN: 0-534-40977-6. 

• Brinkman, Paul T. and Chuck McIntyre, “Methods and Techniques of Enrollment Forecasting,” in New 
Directions for Institutional Research, no. 93, Spring, 1997, Jossey-Bass. 

• Guo, Shuqin, “Three Enrollment Forecasting Models: Issues in Enrollment Projection for Community 
Colleges,” presented at the 40th RP Conference, May 1-3, 2002, Asilomar, Pacific Grove, Cal. 

• Redlinger, Lawrence J. and Sharon Etheredge, “Using Student Classification Specific Applications and 
Admissions Data to  Forecast Enrollment, “presented at AIR 2004, Boston, Mass. 

• Redlinger, Lawrence J. and Stanley L. Gordon, “A Comparison of Time Horizon Models to Forecast 
Enrollment,” presented at AIR 2004, Boston, Mass. 

• Reiss, Elayne, “Best Practices in Enrollment Modeling: Navigating Methodology and Processes, presented 
at 2012 FACRAO Conference – St. Augustine, FL, June 5, 2012 
(http://uaps.ucf.edu/doc/FACRAO_2012_Enrollment.pdf  

• Rylee, Carol and Dale Trusheim, “Enrollment Projections and the Budget Process: A Technique for Smart 
Planning,” presented at SCUP-39 Annual Conference, Toronto, Canada, July 20, 2004.  
(http://www.udel.edu/IR/reports/presentations.html) 

• Wiorkowski, John and Lawrence J. Redlinger, “The Statistical  Anatomy of Academic Enrollment Data.” 

http://uaps.ucf.edu/doc/FACRAO_2012_Enrollment.pdf
http://www.udel.edu/IR/reports/presentations.html


http://www.utdallas.edu/ospa/research/Conference%20Presentations/AIR/AIR.html 

This presentation will be available online at: 

Thank you! 



 

 

1 

The Statistical Anatomy of Academic Enrollment Data 

 

by 

 

John J. Wiorkowski 

The University of Texas at Dallas  

 

and 

 

Lawrence J. Redlinger 

The University of Texas at Dallas 

 

 

 

Model Development 

 

 The size of the enrollment in a particular academic category (for example a 

discipline like Biology, or a rank such as Undergraduate, or a degree such as Ph.D) 

is made up of two components.   The first is the number of students who have been 

admitted in the category at a particular time, and at subsequent time points the 

number of those previously admitted who are still at the institution.  Consider the 

first component, the number of students who are admitted at a particular time t (e.g. 

a semester or quarter), which we shall denote by 
t

x .   This is a random quantity 

which is not known with exactitude until the time period begins.  A plausible 

statistical model for this random quantity is the Poisson Distribution.  The Poisson 

Distribution has a long history and is often used for random quantities which are 

counts.   Consider the process of obtaining new freshmen.  The first step is to make 

prospective students aware of an academic institution.   This is done through media 

advertising, use of mailing lists, personal visits to feeder institutions, etc.  The total 

number of prospective students reached is unknown and but can be modeled by the 

Poisson Distribution with mean   (for the Poisson distribution only one parameter 

is necessary since the standard deviation is  ).  If we assume that each of the 

reached individuals requests further information with probability 
1

 , then 

conditional on the total number of reached individuals, the number requesting 

further in formation would follow the Binomial Distribution.  This process of a total 

“pool” being generated by the Poisson Distribution followed by binomial 

distribution, conditional on the actual total, responding with a fixed probability is 

known as a compound Poisson process.   It is shown in the Technical Appendix 

(Result 1) that a consequence of this is that the number of students requesting 

information will follow a Poisson distribution with parameter 
1

 .  Of the number 

who request further information, assume that the probability of applying for 

admission is 
2

 .  Again assuming that the Binomial Distribution applies, the 

number applying for admission would follow the Poisson Distribution with 

parameter 
1 2

  .   Letting 
3

 represent the probability of an applicant being 

accepted, it follow that the number accepted follows a Poisson Distribution with 



 

 

2 

parameter 
1 2 3

   .  Finally, if 
4

 is the probability that and accepted student 

actually enrolls, the number of new freshmen will follow the Poisson Distribution 

with parameter  , where 

 

     
1 2 3 4

                                                    (1). 

 

Equation (1) conforms to the well known fact that by increasing initial exposure  

( i. e. increasing the value of  ) or increasing any of the probabilities of requesting 

information, applying for admission, actually being admitted and enrolling ( the 
i

  

terms) the average new enrollment will increase.  Since constant efforts are made to 

increase exposure, student response, student application, and the enrollment of 

admitted students ( the process of admission is sometimes manipulated to make the 

probability of admission increase or decrease), it is likely that   is not constant 

from time period to time period.    Accordingly we will assume that the number of 

new students in a category, 
t

x  follows the Poisson Distribution with mean 
t

 . 

 

  

 The second component of enrollment is the number of students who entered 

in previous time periods and are still at the institution.  Denote this number by 
t

y .  

If we denote the total number of students enrolled at time t by 
t

n , then at time t + 1, 

we have the result that 

 

     
t 1 t 1 t 1

n x y
  
                                             (2). 

 

We shall assume that a student leaves the university during time period t with 

probability 
t

p .   It should be noted that those leaving include students graduating, 

students dropping out, students moving to other categories such as undergraduate 

to graduate or Master’s level to Doctoral Level, and students who “stop out”, that is 

temporarily do not enroll for a semester but intend to re-enroll at some later time 

period.  Under this assumption, it is plausible to assume that that given the number 

of students enrolled in the previous time period, 
t

n , the number who will be present 

at time period t + 1 follows the Binomial distribution with probability 
t

1 p . 

  

 The actual data series of enrollments 
1 2 3

n , n , n , . . .  forms the observed time 

series of total enrollment.  From institutional records it is possible to determine the 

values of 
t

x  and 
t

y  for any time period t .   But to understand the statistical 

behavior of the enrollment time series, we must determine the basic statistical 

properties of the time series.   By this we mean the expected value (or mean) and 

variance of 
t

n  as well as the correlation between the enrollment values at adjacent 

time points t and t+k . 
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  If we denote the theoretical mean of 
t

n  by 
t

 ,  it is shown in the Technical 

Appendix (Result 2) that the following relationship exists between the mean of the 

enrollment at times t and t + 1,  

 

    
t 1 t 1 t t

( 1 p )  
 
                                             (3). 

 

Equation (3) shows the dependence of the expected size of the enrollment on the two 

main drivers of enrollment, the expected number of new students ( 
t 1




 ) and the 

proportion of students who leave the institution (
t

p  ).  Increasing the number of 

new enrollees will increase the enrollment as will decreasing the proportion that 

leave.   In fact equation (3) can be rewritten in the form 

 

     t 1 t t 1

t

t t

p
  

 
 


   

 

which implies that the relative change in expected enrollment is the difference 

between the relative size of the new enrollees (relative to the expected total 

enrollment at time t ) less the proportion that leave.  Simply put if the proportion of 

new students is greater than the proportion that leave, expected enrollment will 

increase, and vice versa.    

 

 The variance structure of the series is complicated.  If we denote the variance 

of  
t

n  by 2

t
 , then it is shown in the Technical Appendix (Result 3) that 

 

   
2 2 2

t 1 t 1 t t t t t
p ( 1 p ) ( 1 p )   

 
                               (4). 

 

(Note that if the 
t

n  follow the Poisson distribution, then 
2

t t
   and equation (4) 

simplifies to  

 

    
2 2

t 1 t 1 t t
( 1 p )  

 
     

 

which is the same recursion relationship as expressed  by equation (3).) 
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Either form of equation (4)  indicates that the series has changing variance from 

time period to time period.  This invalidates the use of most standard statistical 

procedures which assume constant variance from time period to time period.   

Further complicating analysis is the fact that the observed enrollments are auto 

correlated, i.e. not independent of each other from time period to time period.   In 

fact it is shown in the Technical Appendix (Results 4, 5 and 6) that the correlation 

between the number enrolled at time t and the number enrolled at time t +k, is given 

by 

 

  t t t 1 t k 1

t t k

t k

( 1 p )( 1 p ) ( 1 p )
Correlation( n ,n )




  





  
     (5).                          

 

Finally using equations (4) and (5), it follows that 

 

 2 2 2

t k t t k t t t t 1 t k 1
Var( n n ) 2 ( 1 p )( 1 p ) ( 1 p )  

    
           (6), 

 

which determines the variability of changes in the levels of enrollment from time 

period  t to time period  t + k.    

 

 

Equilibrium 

 

 Enrollment will stabilize, i.e. cease to grow or contract, if the two key 

parameters, 
t t

and p  cease to change.  (It is possible that stabilization could occur 

by 
t t

and ( 1 p )   moving in different directions, for example increasing retention, 

t
( 1 p ) , to compensate for a decrease in enrollment 

t
 , but this situation is 

unlikely to be sustainable for protracted periods of time).   Accordingly, assume that 

at some point in time 
0

t  we have the situation that 
t t

p p and     and that this 

continues for all 
0

t t .  Then by substituting into equations (3) to (6) above,  

subsequent to 
0

t  the following relationships will hold 

 

   

t k t k

2

t k t k

k

t k t

k

t k t

E( n )    for all k 0
p

Var( n )    for all k 0
p

Correlation( n ,n ) ( 1 p )   for all k 0

2
Var( n n ) [1 ( 1 p ) ]    for all k 0

p









 

 





  

  

  

    

               (7). 
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Figure 1 below shows a simulation of a constant parameter process with 

3,000 and p .2   , so that that the mean of the series would be 15,000. 
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Figure 1.   Simulation of an Equilibrium Series with 3,000 and p .2    

 

Equations (7) imply that the enrollment process is in a no change situation with the 

variability due to the inherent uncertainties in the enrollment process as reflected by 

the stabilized variance and correlation structure of the the process.  Since all the 

components of 
t

n  follow the Poisson distribution and the sum of Poisson 

distributions also follows the Poisson distribution, it is to be expected that the mean 

and variance of 
t

n  would be the same.  What is important is the correlation 

structure of the series.   Contrast the simulation in Figure 1, with that of Figure 2, 

the latter showing a time series of uncorrelated Poisson variables with mean 15,000.   
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Figure 2.  Simulation of Uncorrelated Poisson Variables with mean 15,000 

 

Although both series have the same mean and variance, the difference in correlation 

structure is very apparent with the uncorrelated series of Figure 2. showing greater 

period to period volatility than the data in Figure 1. which changes more smoothly 

from period to period.  When the series of Figure 1 moves away from the mean of 

15,000 it returns to the mean more smoothly than the more erratic period to period 

behavior of Figure 2.   

 

 The strong correlation structure of enrollment series means that the effects 

of changes in the parameters will not have rapid effects on the enrollment, rather, 

such change will gradually emerge over time.    For example, suppose at time t = 11, 

the university was able to permanently increase the average admissions from 3,000 

to 4,000.  By the equations above, with p = .2, this would mean that the total 

enrollment would increase to 20,000.  However, the increase would be gradual and 

not show up fully for almost 15 time periods.  This is shown in Figure 3. , below, 

which simulates such a change.   At first the rise is quite swift, but by t=16, the 

enrollment has only risen to 19,000 and then tapers, geometrically, slowly 

approaching 20,000.  It is shown in the Technical Appendix (Result 8 ), that if the 

average new enrollment changes permanently at time t + 1 from  to   , then at 

time t + k, the new mean will be  

 

    
k

t k
( 1 p )

p p

   





                                      (8). 
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Figure 3.   Change in Enrollment Average from 3,000 to 4,000 at t=11, p =.2 

 

Further it can be shown (Result 7 in the Technical Appendix) that every permanent 

percent increase in average new enrollment will eventually result in the same 

percent increase in average total enrollment.  Thus a 10% increase in average new 

enrollment from 3,000 to 3,300, will eventually result in a 10% increase in average 

total enrollment from 15,000 to 16,500.  In headcount terms, every permanent 

increase of 1 new enrollee is eventually on average worth 1 / p new total enrollees.    

  

Similarly, Figure 4. shows a simulation of what happens when the retention rate 

changes from .8 to .85 ( i.e. p changes from .2 to .15) retaining a constant average 

new enrollment of 3,000.  As in Figure 3, there is at first a steep rise but then a 

slower geometric approach to the new equilibrium mean of 20,000.    It is shown in 

the Technical Appendix (Result 9) , that if the attrition decreases permanently at 

time t + 1 from p to 
p

p   (or alternatively the retention increases from (1 – p) to 

p
( 1 p )  ), then at time t + k, the new mean will be given by the equation 

   
pk

t k p

p

[1 ( 1 p ) ]        
p p


 



   


                   (9). 
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Figure 4.   Change in Enrollment  p from .2 to .15, at t=11, mean = 3,000 

 

In this case p decreased from 20% to 15%, which is a relative decrease of 25% 

(.05/.20).   It is shown in the Technical Appendix (Result 10), that this will result in a 

relative increase in average total enrollment of .25/(1-.25) = .3333.  Therefore 

average total enrollment will grow by 33.33% from 15,000 to 20,000.   The effect of a 

small change in p can be quite profound.    For example, imagine an enrollment 

situations where on average 3,700 new students apply each year and p=.37 so that 

there is a very high attrition rate.   By our previous formulas, this gives an 

equilibrium average total enrollment of 10,000.  If the attrition rate is reduced by 

just .02 to p=.35, the average total enrollment will rise to 10,571 or by almost 6%. 

 

   

Using the Model for Statistical Analysis 

 

 The model above allows one to answer some basic questions about the 

enrollment series.   First and paramount, is the simple question as to whether the 

change in total enrollment from time t to t + 1 indicates that total enrollment has 

changed or whether it is likely just statistical fluctuation.   More specifically suppose 

we want to test the statistical hypothesis: 

 

    
0 t 1 t

A t 1 t

H :

H :

  

 





 


   . 

 

It is shown in the Technical Appendix (Result 11) that if 
0

H  is true and p is known, 

then the statistic 
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    t 1 t

t 1 t

n n
z

( n n )p









                                            (10), 

 

is approximately normally distributed with mean 0 and standard deviation 1.  

Accordingly to test 
0

H , at significance level α = .05, one need only compute z and 

compare it to the limits 1.96 .  If z is within these limits, then one would accept 
0

H  

and declare that no statistically significant change has occurred.   Otherwise, one 

would reject 
0

H  and declare that a significant change has occurred.   

 

 Unfortunately p, may not always be available.  However, the statistic 

 

    t 1 t

C

t 1 t

n n
z

n n









                                              (11), 

 

which does not require knowledge of p, can be used and is statistically conservative 

in the sense that if you reject 
0

H  using (11), you will also reject 
0

H  using (10), but 

not vice versa.   

 

 To illustrate the above, data on enrollment from The University of Texas at 

Dallas collected for Fall Semesters from 1998 to 2008 will be used.  Figure 5, shows 

the data, both listed and graphically, for total undergraduate enrollment and the 

associated 
C

z  statistics for each Fall semester.  (
C

z  was used since p was not 

available).   It is clear that the conservative
C

z  statistics are mirroring the pattern 

evident in Figure 5.   Specifically, there is a strong rise in enrollment from Fall 1999 

until Fall 2005 followed by no growth from Fall 2005 through Fall 2008.   

 

 

Total UG Enrollment

Significant

Fall Change

p-value

1998 5,501

1999 5,879 3.543 Yes 0.00039500

2000 6,439 5.046 Yes 0.00000045

2001 7,416 8.300 Yes 0.00000000

2002 7,969 4.458 Yes 0.00000826

2003 8,516 4.260 Yes 0.00002041

2004 8,904 2.940 Yes 0.00328497

2005 9,397 3.644 Yes 0.00026816

2006 9,193 -1.496 No 0.13460081

2007 9,096 -0.717 No 0.47321354

2008 9,202 0.784 No 0.43326466
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Figure 5.  UG Enrollment UTD Fall 1998 – Fall 2008 
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 Figure 6. below shows the Enrollment data for Master’s students at UTD 

from Fall 1998 through Fall 2008.   Again the 
C

z  statistics mirror the pattern of the 

data.   Specifically there is strong growth from Fall 1999 through Fall 2001.  The 

series does not change significantly in the Fall of 2002 but drops, significantly, in the 

Fall of 2003 after which there has been no real change year to year change from Fall 

2003 through Fall 2008.  However, the period from Fall 2004 through Fall 2008 

seems to indicate a possible recovery.   In order to test this, we can use the last 

equation given in (7) which gives the 
t k t

Var( n n )

 .  If we assume the series is in 

equilibrium, then the statistic 

   2008 2004

C

2008 2004

n n 4705 4311
z 4.15

n n 4705 4311

 
  

 
, 

 

is also conservative and when compared to the normal distribution with .05  , 

indicates that the recovery may be real since the value is statistically significant.  

This indicates that although the year by hear changes are not significant, the 

cumulative effect over the four year period may indicate a slow recovery. 

 

Master's Enrollment

Significant

Fall Change

1998 3,519

1999 3,714 2.293 Yes 0.02185672

2000 4,014 3.413 Yes 0.00064342

2001 4,760 7.964 Yes 0.00000000

2002 4,731 -0.298 No 0.76595141

2003 4,446 -2.975 Yes 0.00292939

2004 4,311 -1.443 No 0.14912367

2005 4,444 1.421 No 0.15519361

2006 4,410 -0.361 No 0.71784957

2007 4,547 1.448 No 0.14773762

2008 4,705 1.643 No 0.10045988
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Figure 6.  Master’s Enrollment UTD Fall 1998-Fall 2008 
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 Since we did not know the value of p, we have been forced to use the 

conservative z statistics.    In some cases, it is possible to use data to estimate p.  

Equation (3) above, when p is constant from time period to time period can be 

written as  

 

    
t 1 t 1 t

( 1 p )  
 
   , 

 

which suggests a regression like relationship between 
t 1




 and 
t

  with slope (1 – p), 

but with constantly changing intercept 
t 1




.   This suggests that a similar 

relationship might hold for the relationship between 
t 1

n


 and 
t

n .  If one could come 

up with an estimate of 
t 1




, say 
t 1




, then it would not be unreasonable to expect 

that 

 

   

t 1 t 1 t t 1

t 1 t 1 t t 1

        n n ( 1 p )

   n n ( 1 p )

        

 

 

  

  

   

     . 

Here 
t 1



 would not have the properties usually assumed in standard regression 

analysis (uncorrelated with constant variance).   However, it is well know that even 

with auto-correlated, heteroscedastic errors, least squares analysis will still give 

unbiased parameter estimates.   

 

 To illustrate the above, we will use data from the University of Texas at 

Dallas for Lower Level Undergraduates (the first two years of college) and for PhD 

students.   As an estimate of 
t 1




 we will use the value 
t

x , the number of new 

enrollees in the category in the previous time period since 
t 1

x


 would be unknown at 

time t.  Figure 7. shows the data and results of performing such a regression.  Since 

the regression was done without an intercept, the usual value of 2
R is not valid.   

Instead a pseudo 
2

R  is computed using the formula 

 

   

2

t t
2 t

2

t

t

( n n )

Pseudo R 1 .8944
( n n )



  





. 

 

This indicates very high predictability.   From the slope estimate, we get that 

p .4148  which indicates that about 42% of the students leave the Lower Level  
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Lower Level Enrollment

Year Forecast error

1999 1,764 732 1,032 1,498 1,609 155.44

2000 1,992 914 1,078 1,764 1,946 45.78

2001 2,180 1112 1,068 1,992 2,278 -97.63

2002 2,596 1060 1,536 2,180 2,336 260.36

2003 2,826 1208 1,618 2,596 2,727 98.93

2004 2,865 1265 1,600 2,826 2,919 -53.65

2005 2,880 1204 1,676 2,865 2,880 -0.47

2006 2,710 1171 1,539 2,880 2,856 -146.25

2007 2,687 1144 1,543 2,710 2,730 -42.77

2008 2,683 1205 1,478 2,687 2,777 -94.32
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Figure 7.   Data and Regression Results for UTD Dallas 

Lower Level Undergraduate Enrollment 

 

undergraduate category each year.  Assuming that this value of p is relatively stable, 

it follows that the number of years a student stays in the lower level category follows 

a geometric probability distribution with parameter p.   The mean of the geometric 

distribution is given by 1 / p  which in this case is 1 / .4148 = 2.41.   This indicates 

that on average, a student spends about 2.41 years in the category of lower level 

undergraduate.  This value conforms well with other estimate of the length of time a 

student stays in this category. 
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Forecasting Using the Model 

 

 When forecasting an enrollment series two distinct situations arise.   The first 

is when the process is in equilibrium.   In the case the governing equations for the 

system are given by Equation (7).    That is the mean, variance, and correlation 

structure of the system is stable and not changing with time.  Assuming you know 

the value of 
t

n , a simple forecast of 
t k

n


 and an approximate 95% confidence 

interval on the forecast is, based on Equation (7), 

 

    
k

t t
n 1.96 2n [1 ( 1 p ) ]                                    (12). 

 

Note that as you forecast further and further into the future, i.e. k gets larger, 

Equation (12) approaches a maximal forecast range of 
t

1.96 2n .  However, for 

one period ahead the forecast range is much smaller and is given by 
t

1.96 2n p . 

Figure 8.  below  shows the one step ahead forecasted and confidence intervals for a 

simulated series with 3,000  , p=.2, so that 15,000  .  The dark squares in  
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Figure 8.  One Step Ahead Forecasts for a Series in Equilibrium 

 

Figure 8. represent the actual values of the time series while the vertical lines 

represent the confidence interval.   As can be seen, the confidence interval brackets 

the actual value most of the time.  If one used the conservative limits of 
t

1.96 2n , 

the limits would have ranged between approximately 14,600 and 15,400 which 

would have been much too wide.   Accordingly, knowledge of the parameter p is 



 

 

14 

quite important in forecasting the series.  The relative error of the one step ahead 

forecast is given by the equation 

 

  
t

t t

1.96 2n p p
2.772

n n
                                       (13). 

 

In the simulated case above with 15,000   and p = .2, Equation (13) indicates that 

the one step ahead confidence interval is approximately   1 % around the value at 

time t .  

 

 If the system is not in equilibrium, then it is still possible, under certain 

circumstances, to forecast the series.  It is shown in the Technical Appendix (Result 

13) that the following “regression like” relationship exists for the series 

 

    
t ! t 1 t t t 1

n n ( 1 p ) 
  
                                    (14), 

 

where 

 

    
t 1 t+1 t t t

Var( ) p ( 1 p )  


                                (15). 

 

The strength of this “regression like” relationship can be measured by an analogue 

to the usual regression coefficient of determination, specifically, 

 

    
2 t

t 1

Var( )
1

Var( n )






   . 

 

Using Equations (4) and (15), one arrives at the formula 

 

   

2 2

2 t t

2 2

t 1 t t t t t

( 1 p )

p ( 1 p ) ( 1 p )




  





   
                           (16). 

 

 

The use of equation (14), is quite difficult since 
t 1




 is not constant from time period 

to time period.   If one can replace 
t 1




 with an estimate 
t 1




 and 
t

p  is known, then 

equation (14) can be used for forecasting.   To illustrate, we will look at Doctoral 

enrollment data at The University of Texas at Dallas.   In this case we will use as our 

estimate of 
t 1 t

x

  the number of new doctoral students in the previous year.   It is 

shown in the Technical Appendix, Result 15, that with this estimate, the variance  of 

the error 
t 1 t 1

( n n )
 
 where  

 

    
t ! t t t

n x n ( 1 p )

                                   (17) 
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is given by the equation 

 

   
t 1 t 1 t+1 t t t t

Var( n n ) p ( 1 p )  
 
                      (18). 

 

 As an approximation, we will take 
t 1 t t t t t

n p  and n  

   , which yields the 

estimate 

 

    
t 1 t 1 t t t

Var( n n ) n p ( 3 p )
 
                       (19).   

 

From equations (17) and (19), it follows that an approximate 95% confidence 

interval on the enrollment at time t + 1, is given by the limits 

 

   
t t t t t t

x n ( 1 p ) 1.96 n p ( 3 p )                             (20). 

 

These limits are shown in Figure 9.   As can be seen, the forecasting intervals show a 

rather odd pattern of just enclosing the actual values or just missing them.   The 

forecasting intervals seem to show a “high” followed by a “low” forecast.   In the 

State of Texas, university funding is determined every two years.  The legislative 

session is held in the summer with new funding for the next two years beginning in 

the following Fall semester.   Since offers to new doctoral students are usually made 

in the late spring or early summer, this means that every two years there is 

uncertainty as to how much state funding will be available in the upcoming 

academic year.   It is our conjecture, that university departments tend to be 

conservative in the number of doctoral offers in years when the legislature is in 

session since future funding is uncertain.   In the subsequent year, when funding is 

known, the number of offers tends to be less conservative.   This could induce a two 

year cycle, which is reflected in the number of new doctoral students enrolled.    

Since we used the previous year’s new enrollment as our estimate of 
t 1




, this would 

put our forecasts out of synchronicity with the actual enrollment cycle and could be 

the source of the two year oscillating forecasting pattern.  
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Year Forecast High Low

2001 155 492 536 570 501 500

2002 216 500 603 638 568 805

2003 224 805 847 891 803 756

2004 282 756 867 910 824 877

2005 253 877 932 978 886 858

2006 253 858 917 962 872 920

2007 285 920 997 1,044 950 913

2008 197 913 904 950 857 1037
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Figure 9.  Forecasts of Doctoral Enrollment 

The University of Texas at Dallas 
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Semester Credit Hours 

 

 The above analysis can be used to forecast and test hypotheses about changes 

in the numbers of semester credit hours generated.   Let 
t

h  denote the number of 

semester credit hours in an enrollment category generated by 
t

n  students in that 

category.   Then the credit hours and the enrollment are related by the formula 

 

     
t t t

h w n                                                  (21), 

 

where 
t

w  is the average number of credit hours taken by students in the enrollment 

category.  The statistical structure of the semester credit hour series can then be 

inferred from the information about enrollment. 

 

 Let 
t t t t

E( h ) w   , then to determine if there has been a change in the 

number of semester credit yours generated form time period t to t+1, is equivalent to 

testing the hypothesis 

 

     
0 t 1 t

A t 1 t

H :

H :

  

 





 


 

 

However, if this hypothesis is rejected, it may be because enrollment has changed, or 

the number of hours taken per student has changed or both.  The natural statistic to 

examine is  

   
t 1 t t 1 t 1 t t

h h w n w n
  
    

 

which by the Poisson nature of the 
t

n  series would be approximately normally 

distributed with mean and variance given by 

 

  
t 1 t t 1 t 1 t t

2 2 2 2 2

t 1 t t 1 t 1 t t t 1 t t t

E( h h ) w w

Var( h h ) w w 2w w ( 1 p )

 

  

  

   

  

    
        (22). 

 

If we assume that the average credit hours per student is the same in periods t and   

t + 1, and further that the enrollment is in equilibrium, Equations (22) becomes 

 

   
t 1 t

2

t 1 t

E( h h ) 0

Var( h h ) 2w p 2w p 





 

  
                             (23). 

 

Using an argument similar to that which led up to Equations (10) and (11),  we can 

use the test statistic Z to test 
0

H  where  
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    t 1 t

t 1 t

t 1 t

h h
Z

w w
( h h )p

2









 
 

 

                                     (24), 

 

where Z can be compared to a normal distribution with mean 0 and variance 1. 

If 
0

H  is rejected and the test of steady enrollment is accepted, then this would imply 

that the credit hours per student had changed significantly.  Further if 
0

H  is 

accepted and the test for steady enrollment is rejected, then this would also imply 

that the credit hours per student had changed significantly.  If p is not available, 

then the conservative statistics 

 

    t 1 t

C

t 1 t

t 1 t

h h
Z

w w
( h h )

2









 
 

 

                                      (25), 

 

can be used.   Figure 10. shows the total semester credit hour generation at all 

student levels for The University of Texas at Dallas for the Fall semesters from 1998 

through 2008.  The graph and the 
C

Z  statistic shows significant year to year growth 

in credit hours except for the period from Fall 2006 to Fall 2007.  Also shown in the 

figure is the 
C

z which tests for significant enrollment growth.  This statistic indicates 

that for the period Fall 2002 to Fall 2003, and also Fall 2005 to Fall 2006, the growth 

in enrollment was not significant even though the growth in credit hours was.   This 

indicates that for these two periods, there were significant changes in the number of 

credit hours per student.   Indeed from Fall 2002 to Fall 2003, the average credit 

hours per student went from 9.66 to 10. 25 and from Fall 2005 to Fall 2006 the 

average credit hours per student went from 10.15 to 10.53.  It is conjectured that 

changes in the advising programs at UTD had a positive effect on the number of 

hours successfully attempted by students. 
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Enrollment Credit Hour

t Change Change

1998 9,517 86,439 9.08

1999 10,101 4.17 Yes 94,199 9.33 6.02 Yes

2000 10,945 5.82 Yes 104,398 9.54 7.45 Yes

2001 12,676 11.26 Yes 120,378 9.50 10.93 Yes

2002 13,505 5.12 Yes 130,439 9.66 6.49 Yes

2003 13,718 1.29 No 140,559 10.25 6.16 Yes

2004 14,092 2.24 Yes 144,576 10.26 2.35 Yes

2005 14,699 3.58 Yes 149,208 10.15 2.68 Yes

2006 14,523 -1.03 No 152,902 10.53 2.09 Yes

2007 14,556 0.19 No 153,115 10.52 0.12 No

2008 14,944 2.26 Yes 156,768 10.49 2.02 Yes
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Figure 10.  UT Dallas Total Credit Hour Growth 

 

 

 From equation (21), further statistical properties of  
t

h  can be inferred.   For 

example from Equations (21), (14) and (15), it follows that 

 

   

t 1

t 1 t 1 t 1 t t t 1

t

t+1 t t t 1

w
h ( w ) ( 1 p )h e

w

       = a b h e

 

   



   

 

                (26), 

where 

 

   
2

t 1 t 1 t+1 t t t
Var( e ) w ( p ( 1 p )) 

 
                      (27). 
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Therefore the semester credit hour series shows an auto-regressive structure similar 

to that of the enrollment series and if suitable information is available, regression 

like forecasts may be generated.  

 

 

Variability in Retention   

 

It is clear that retention, and thus the parameter p, may vary from school to school 

or within discipline in a school.   For example, the undergraduate retention in the 

discipline of Computer Science may be lower than that of the discipline of business 

since the former students may have a poorer idea of the field basing their original 

major choice more on past “use” of a computer rather than on developing and 

writing programs.   Our methodology tacitly assumes that the parameter p is 

constant at a student level, say lower level undergraduate, and does not take into 

account variability between disciplines.   If one has K disciplines with 
i

m  students in 

discipline i and the retention rate is 
i

1 p within discipline i, then our previous 

analysis has treated the whole group as following the binomial distribution with 

parameters   

 

   
K K

i i

i 1 i 1

m m  and  p p / m
 

 

   .  

 

The pooled Binomial distribution, we would use, would have mean m p


 and 

variance m p( 1 p )


 .  The correct distribution would be mixture of binomials 

(which is not necessarily binomial unless all the 
i

p are the same) with mean 
K

i i

i 1

m p


  

and variance 
K

i i i

i 1

m p ( 1 p )


 .    The mean values of the two distributions are the 

same and it is shown in the Technical Appendix( Result 16) that using the pooled 

binomial distribution overestimates the variance by 
K

2

i i

i 1

m ( p p )


 .    For a 

deviation of .05, for example for 
i

p ' s  ranging from .30 to .25 , (which is quite 

sizable ), would introduce an error of less than  .0025m


, which is relatively small 

compared  to m
 .  Accordingly, we do not think that this small correction 

substantially alters the results above. 
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Conclusion 

 

 It is hoped that by illustrating the vital roles of the parameters 
t

 , 
t

1 p , 

and 
t

w , that is the average rate at which new students are enrolled, the retentions of 

enrolled students and the average load, on the size of the student populations, that 

better forecasts and enrollment management will be facilitated. 
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Result 1 

 

 If n is distributed as a Poisson random variable with parameter λ, and 

conditional on n, x is distributed as a Binomial random variable with parameters  

n and π , then x is unconditionally distributed as a Poisson random variable with 

parameter λπ.   

 

Proof: 

 

The joint distribution of n and x is given by, 

 

   
n

x n xe n!
p( n, x ) ( 1 )

n! x!( n x )!


 


 


, 

 

on the range n = 0, 1, 2, ....... , ;  and x  n.     

 

The unconditional distribution of x is then given by 

 

   
 

nx

n x

( 1 )e
p( x )

1 x! ( n x )!

  







 
  

  
 . 

 

By substituting y=n – x, and therefore n = x + y, one obtains 

 

 
 

y
x x x

( 1 )

y 0

( 1 )( ) e ( ) e ( ) e
p( x ) e

x! y! x! x!

  
 

     





   , 

 

which implies that x is distributed as a Poisson random variable with parameter λπ. 

 

 

Result 2 

 

 We assume that 
t 1 t 1 t 1

n x y
  
   where 

t 1
x


 follows the Poisson distribution 

with parameter 
t 1



, and 

t 1
y


given 

t
n  is distributed as the Binomial distribution 

with parameters 
t

n  and 
t

1 p .   It therefore follows that, 
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t

t

t

t 1 t 1 n t 1 t

n t 1 t t 1 t

n t 1 t t

t 1 t t

E( n ) E ( E( n | n )

        =E [ E( x | n ) E( y | n )]

        =E [ n ( 1 p )]

        = ( 1 p ) .





 

  

 





 



 

 

 

 

Here it is assumed that 
t 1

x


is independent of 
t

n , and the symbol 
tn

E (...)  denotes 

expectation with respect to the distribution of 
t

n  .   

 

 

Result 3 

 

 The variance of 
t 1

n


 can be written as 

 

  

t t

t t

2

t 1 t 1 n t 1 t n t 1 t

n t 1 t t t n t 1 t t

2 2

t+1 t t t t t

Var( n ) E [Var( n | n )] Var [ E( n | n )]

        =E [ n p ( 1 p )] Var [ n ( 1 p )]

        = p ( 1 p ) ( 1 p )



 

  

   

 

  

    

   

 

 

based on the means and variances of the Poisson and Binomial distributions and 

where the notation 
tn

Var (....)  denotes the variance with respect to the distribution of 

t
n . 

 

 

Result 4 

 

 If 
1

y  is Binomial with parameters n and 
1

p , and 
2 1

y | y  is Binomial with 

parameters 
1 2

n y  and p , then the random variable 
1 2

n y y    follows the 

Binomial distribution with parameters n and 
1 2

( 1 p )( 1 p )  . 

 

Proof: 

 

 The joint distribution of  
1

y  and 
2

y  is given by 

 

  1 1 2 1 21y n y y n y y

1 2 1 1 2 2

1 2

n n y
p( y , y ) p ( 1 p ) p ( 1 p )

y y

  
   

     
   

 

 

1 2 1
on the range 0 y n and 0 y n y .       

1 2 2 1
Letting z = y y  so that y z y   , 

it follows that  
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  1 1 1y n y z y n z

1 1 1 2 2

1

zn
p( y ,z ) p ( 1 p ) p ( 1 p )

yz

    
    
   

 

 

1
on the range 0 z n and 0 y z .      By regrouping terms, it follows that the 

distribution of z is given by 

 

 

1

1 0

y
z

n z n z 1
1 2 2

y 1 2 1

zn p
p( z ) ( 1 p ) p ( 1 p )

yz p ( 1 p )


    
       

     
  . 

 

The summation above is the binomial representation of the term n
( a b )  with 

1

2 1

p
a , b 1, and n z

p ( 1 p )
  


 .  This yields the expression 

 

 

  

z

n z n z 1
1 2 2

2 1

n p
p( z ) ( 1 p ) p ( 1 p ) 1

z p ( 1 p )

   
     

   
 

 

which upon manipulation yields, 

 

  
z n z

1 2 1 2

n
p( z ) [1 ( 1 p )( 1 p )] [( 1 p )( 1 p )]

z

 
      
 

. 

 

This implies that 
1 2

z = y y   is Binomial with parameters 
1 2

n and 1 ( 1 p )( 1 p )   , 

so that 
1 2

n z n y y     is Binomial with parameters 
1 2

n and ( 1 p )( 1 p )    QED. 

 

 

Result 5 

 

 Let 
t ,t k

S


 be the survivors of the 
t

n  objects present at time t who are still in 

the system at time t + k, then given 
t

n , 
t ,t k

S
  follows the Binomial distribution with 

parameters 
t

n and probability 
k 1

t i

i 0

( 1 p )






  . 

 

Proof: 

 

 Apply mathematical induction to Result 4 with 
k

i

i 1

z y


  QED 

 

Result 6 
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 Let 
t 1,t k

D
 

be the survivors of the objects which entered the system between 

times t + 1 and t + k -1 who are still in the system at time t + k, that is 

 

     
k 1

t 1,t k t i ,t k

i 1

D S


   



  

   

 Then  

 

   
t k t k t 1,t k t ,t k

n x D S
    
    , 

 

where 
t k

x


are new entries to the system at time t + k.  By the assumption of the 

model, all three components of 
t k

n


 are independent of each other and therefore 

uncorrelated.  It follows that 

 

 
t k t t k t 1,t k t ,t k t t ,t k t

Cov( n ,n ) Cov( x D S ,n ) Cov( S ,n )
     

    , 

 

Since there is no correlation between objects which have entered the system after 

time t with those that were in the system at time t.  

 

 Letting 
k 1

t ,t k t i

i 0

( 1 p )


 



  , from Result 5 we have 

 

 

t t

t t

t ,t k t n t t ,t k t t n t ,t k t

2

n t t ,t k t n t t ,t k

2 2 2

t t t ,t k t t ,t k

2

t t ,t k

Cov( S ,n ) E ( n E( S | n ) E( n )E ( S | n )

                        = E ( n ) E ( n )

                        = ( )

                        = 

  

    

 

  

 

 



 



 
 

 

Therefore,  

 

  
k 1

2

t k t t t i

i 0

Cov( n ,n ) ( 1 p )


 



  , 

 

From which the correlation can be computed by dividing by the product 
t t k

 


. 

 

 

Result 7 
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( + )

p p
Since     

p





  



 



 ,   

it follows that the percentage relative change in the average new enrollment is the 

same as the percentage relative change in the average total enrollment. 

 

 

 

 

Result 8 

 

 Assume that the up till and including time t the process has parameters 

 and p , and that for all time t k , k 1   the process has parameters  and p  , 

then it follows that  

 

  

t 1 t

2

t 2

k 1
i k

t k

i 0

k k

t k

k

t k

( 1 p ) ( 1 p )
p

( ) ( )( 1 p ) ( 1 p )
p

( ) ( 1 p ) ( 1 p )
p

[1 ( 1 p ) ] ( 1 p )
p p

( 1 p )      QED
p p

 

 





 


     


    


  

  


  
















       

      

    


     


   


 

 

 

Result 9 

 

 Assume that the up till and including time t the process has parameters 

 and p , and that for all time t k , k 1   the process has parameters 
p

 and p-  , 

then it follows that  
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t 1 t p p

2

t 2 p p

k 1
i k

t k p p

i 0

k k

t k p p

p

k

t k p

p p

pk

t k p

p

[1 ( p )] ( 1 p )
p

( 1 p ) ( 1 p )
p

( 1 p ) ( 1 p )
p

[1 ( 1 p ) ] ( 1 p )
p p

( 1 p )
p p p

[1 ( 1 p ) ]      
p p


     


    


   

 
  



  
 

 


 



















       

      

     

       


 
      

   

    




  QED
 

Result 10 

 

 

  

p

p p

pp

p p p
Since     

p
1

p p

  

 

 




 




 

 

a relative decrease in attrition of 
p

/ p , results in a relative increase in the average 

total enrollment of 
p p

( / p ) /[1 ( / p )]  . 

 

 

Result 11 

 

 In order to test the hypothesis 

 

    
0 t 1 t

A t 1 t

H :

H :

  

 





 


  

 

assume the series is in equilibrium with constant mean  , so that from equation (7) 

it follows that 
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t 1 t 0

1

t 1 t

p

E( n n | H ) 0

2
Var( n n ) [1 ( 1 p ) ] 2 2 p

p




 


 







   

     

 

 

Since both 
t 1

n


and  
t

n  follow the Poisson Distribution, and can be approximated by 

the Normal Distribution, it follows that the difference 
t 1 t

n n

  can be approximated 

by a Normal Distribution which under 
0

H  would have mean 0 and variance 2 p . 

It then follows that the statistic 

 

    t 1 t
n n

z
2




  

 

approximately follows the normal distribution with mean 0 and standard deviation 

1.   Unfortunately,    is usually unknown and must be replaced by an estimate  .   

Accordingly, the practical statistic to be used to test 
0

H  is 

 

    t 1 t
n n

z
2




  

 

which, based on the large size of 
t

n , should still approximately follow the normal 

distribution  with mean 0 and standard deviation 1.   

 

 Several possible estimates of   can be made, depending on what information 

is available.   For example is the number of new enrollees 
t

x  and 
t 1

x


 are available, 

then  

     t 1 t
x x

2
 


 , 

 

is the minimum variance unbiased estimate of  , under the assumption that   is 

the same at time period t and t+1.   

 

 If only 
t 1

x
  is available, then one could take 

 

     
t 1

x


 . 

 

If neither 
t

x  nor 
t 1

x


 is available, then one can compute z as 
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    t 1 t
n n

z
2 p




 . 

 

Under the assumption that the series is in equilibrium, it is natural to look at an 

estimator of the form 

 

  
t t 1

qn ( 1 q )n   with 0 q 1


     . 

 

Such an estimator is unbiased and has variance 

 

  

2 2 2 2 2

2 2

Var( ) q ( 1 q ) 2q( 1 q ) ( 1 p )

             = 2q( 1 q ) p

   

 

     

 
 

 

The variance is minimized by taking q = .5, so that the test statistic becomes 

 

    t 1 t

t 1 t

n n
z

( n n )p









  .    

 

 

 Finally, if p is not available, the statistic 

 

    t 1 t

C

t 1 t

n n
z

n n









 

 

 

can be used as a conservative test of 
0

H  .   This is conservative in the sense that if 

C
z  indicates a significant chant, then so also will z  (but not vice versa).   

 

 

Result 12 

 

 The terms 
t 1 t t t+1 t 1 t t

n ( 1 p ) and [n n ( 1 p )] 
 
      are uncorrelated. 

 

Proof: 

 

 Since 
t 1




 is a constant, we have from Result (6) 

 

  

t 1 t t t+1 t 1 t t

t t t+1 t t

t 1 t t t t

2 2 2 2

t t t t

Cov( n ( 1 p ),  [n n ( 1 p )])

     Cov( n ( 1 p ),  [n n ( 1 p )])

      =Cov( n ,n )( 1 p ) Var( n ( 1 p ))

      = ( 1 p ) ( 1 p ) 0

 

 

 



    

   

  

   
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QED 

 

 

Result 13 

 

From Results 3 and 12, it follows that 

 

 

2 2 2

t 1 t 1 t+1 t t t t t

t+1 t t t 1 t+1 t t

2 2

t t t 1 t+1 t t

Var( n ) p ( 1 p ) ( 1 p )

                =Var( n ( 1 p )) Var( n n ( 1 p ))

                = ( 1 p ) Var( n n ( 1 p ))

   

 

 

 





     

     

    

 

 

Which by matching terms, implies that 

 

  
t 1 t+1 t t t+1 t t t

Var( n n ( 1 p )) p ( 1 p )  

      . 

 

 

 

 

 

Result 14 

 

 If one takes 
t 1 t 1 t t

n n ( 1 p )
 
   , then  

 

  
t 1 t 1 t+1 t t t t 1

t+1 t 1 t t t 1

Var( n n ) p ( 1 p ) Var( )

                          -2Cov(n , ) 2( 1 p )Cov( n , )

  

 

  

 

    

 
 

 

Proof: 

 

 Since 
t 1 t 1 t t t 1 t 1 t t t 1 t 1

n n ( 1 p ) n n ( 1 p ) ( )   
     
         , 

 

it follows that 

 

 
t 1 t 1 t 1 t 1 t t t 1

t+1 t 1 t t t 1

Var( n n ) Var( n n ( 1 p )) Var( )

                          -2Cov(n , ) 2( 1 p )Cov( n , )

 

 

    

 

     

 
 

 

Then using Result 13, the result follows.  QED 

 

 

Result 15 

 

 If one takes 
t 1 t

x

 , then 
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t 1 t 1 t+1 t t t t

Var( n n ) p ( 1 p )  
 
      

 

Proof: 

 

 Since 
t t t t

Cov( n , x ) Var( x )   , and by an argument similar to that used in 

Result 6, 
t 1 t t t

Cov( n , x ) ( 1 p )


  , it follows that the two covariance terms of 

Result 14 cancel each other out.   QED 

 

 

 

 

 

 

 

 

 

 

 

 

Results 16 

 

 If 
K

i

i 1

m m




  and 
K

i

i 1

p p / m




 , then 

 

  
K K

2

i i i i i

i 1 i 1

m p( 1 p ) m p ( 1 p ) m ( p p )


 

      . 

 

Proof:   

  

    
2

m p( 1 p ) m p m p
  

    

 

and 

 

  
K K K K

2 2

i i i i i i i i i

i 1 i 1 i 1 i 1

m p ( 1 p ) m p m p m p m p


   

        , 

 

From which it follows that  

 

  

K K
2 2

i i i i i

i 1 i 1

K
2

i i

i=1

m p( 1 p ) m p ( 1 p ) m p m p

                                                  = m ( p p )

 

 

    



 



 



A11 

 

QED. 
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