USING STUDENT LEARNING OUTCOMES ASSESSMENT

Dr. Gloria Shenoy Director of Assessment at UTD

April 2016

USING SLO ASSESSMENT

CLOSING THE LOOP CONTINUOUS

IMPROVEMENT

FUNDAMENTAL QUESTIONS:

- Is this [class, program, activity] working?
- Are our students prepared?
- Are our students learning?
- How can we get better?

USING SLO ASSESSMENT

CLOSING THE LOOP CONTINUOUS

IMPROVEMENT

Outcomes of today:

EXPLAIN what "close the loop" and "continuous improvement" means, specifically in terms of student learning outcomes assessment

DECIDE between the different framework about use that makes sense for your class/program

DETERMINE and EXAMINE ways you can use the data you collect at the classroom and program level

IMPROVEMENT

L. DEE FINK, SIGNIFICANT LEARNING, 2013

IMPROVEMENT

CONTINUOUS?

L. DEE FINK, SIGNIFICANT LEARNING, 2013

USE FRAMEWORKS

INSTRUMENTAL

Decisions made

CONCEPTUAL

New insight

AFFIRMATION

For internal or external use

PROCESS

Change in how assessment is done

JONSON, GUETTERMAN, & THOMPSON, 2014

PEDAGOGY

Changing something in the class: HOW/WHAT
CURRICULUM

Changing something in the program

STUDENT SUPPORT

FACULTY SUPPORT

APPRECIATIVE INQUIRY

DEFINITION DISCOVERY DREAM DESIGN DESTINY

IMPLEMENTATION FIDELITY

FINLEY & SMITH, 2016

List of features to meet		
outcomes		
Class 1-10 final papers		
Research class: Hypothesis		
Data gathering		
Capstone paper: data analysis		
Conference proposal		

List of features to meet outcomes	Adherence		
Class 1-10 final papers			
Research class: Hypothesis	yes		
Data gathering	no		
Capstone paper: data analysis			
Conference proposal			

List of features to meet outcomes	Adherence	Quality	
Class 1-10 final papers			
Research class: Hypothesis			
Data gathering	no	last minute change	
Capstone paper: data analysis			
Conference proposal			

List of features to meet outcomes	Adherence	Quality	Exposure	
Class 1-10 final papers				
Research class: Hypothesis				
Data gathering				
Capstone paper: data analysis			not offered for 2 semesters	
Conference proposal				

List of features to meet outcomes	Adherence	Quality	Exposure	Responsive- ness
Class 1-10 final papers				
Research class: Hypothesis				
Data gathering				
Capstone paper: data analysis				summer session
Conference proposal				

	learning outcomes high	
	Program: Effective!	
fidelity low	fidelity high	
Not sure;		
not working though		
	learning outcomes low	

	learning outcomes high	
	Program: Effective!	
fidelity low	fidelity high	
Not sure;	Modifications	
not working though	needed	
	learning outcomes low	

	learning outcomes high
Not sure; something is working	Program: Effective!
fidelity low	fidelity high
Not sure; not working though	Modifications needed
	learning outcomes low

DOUBLE LOOP LEARNING

TAGG, 1997

 Most Learning (Single-Loop)

 Improvement within an existing system that rests on unchallenged assumptions that are implicit and unchallenged.

 Underlying Assumptions

 Image: Assumption of the system that the system that

Results

Double-Loop Learning

Expanding the analytical frame to explicitly identify and then challenge underlying assumptions.

http://edbatista.typepad.com/edbatista/images/2006/12/Double-Loop_Learning_2_Large.gif

STORIES WE CAN TELL:

- What's happening now?
- Compared to where you've been?
- What is the sequel?

Outcomes (Overview)

Student of the Doctor of Philosophy in Software Engineering program will be able to:

- Broad knowledge in computer science, detailed in software engineering: Students will be able to demonstrate a broad knowledge of computer science and a focused understanding of their area of expertise.
- 2. Conduct Original Research: Students will be able to perform original research in software engineering.
- 3. Communicate effectively: Students will be able to communicate technical content effectively both orally and in writing.
- 4. edit new objective

OUTCOME #1: Broad knowledge in computer science, detailed in software engineering: Students will be able to demonstrate a broad knowledge of computer science and a focused understanding of their area of expertise.

#	Assessment Measure	Results	Plan			
1	edit new measure	edit new result	edit new plan			
SUM	SUMMARY OF OUTCOME #1					
A) DIS	A) DISCUSSION OF RESULTS					
B) DISCUSSION OF MODIFICATIONS/RECOMMENDATIONS (CLOSING THE LOOP)						

upcoming workshops: Summer: 10 minute teaching and learning tips videos for 10 weeks (10 in 10)

August 11th & 12th: 2 day seminar on assessment (contact me if you would like to come)