USING STUDENT LEARNING OUTCOMES ASSESSMENT

Dr. Gloria Shenoy
Director of Assessment at UTD

April 2016
USING SLO ASSESSMENT
CLOSING THE LOOP
CONTINUOUS IMPROVEMENT
NILOA, 2011
Assessment Plans
- Descriptive
- Defines measures
- Easily downloaded

Assessment Resources
- Easily downloaded

Evidence of Student Learning
- Interpreted results
- Contextualized to institution
- Presented graphically
- Disseminated

Current Assessment Activities
- Defines activities

Use of Student Learning Evidence
- Targeted to audience
- Provides examples
- Describes improvement
- Defines next steps

COMMON TO ALL
- Clearly worded
- Prominently posted
- Updated regularly
- Receptive to feedback

Student Learning Outcomes Statements
- Specific

NILOA, 2011
FUNDAMENTAL QUESTIONS:

- Is this [class, program, activity] working?
- Are our students prepared?
- Are our students learning?
- How can we get better?
USING SLO ASSESSMENT
CLOSING THE LOOP
CONTINUOUS IMPROVEMENT
CHANGE
Outcomes of today:

EXPLAIN what “close the loop” and “continuous improvement” means, specifically in terms of student learning outcomes assessment

DECIDE between the different framework about use that makes sense for your class/program

DETERMINE and EXAMINE ways you can use the data you collect at the classroom and program level
IMPROVEMENT

CONTINUOUS?

L. DEE FINK, SIGNIFICANT LEARNING, 2013
USE FRAMEWORKS
INSTRUMENTAL

• Decisions made

CONCEPTUAL

• New insight

AFFIRMATION

• For internal or external use

PROCESS

• Change in how assessment is done

JONSON, GUETTERMAN, & THOMPSON, 2014
PEDAGOGY

- Changing something in the class: HOW/WHAT

CURRICULUM

- Changing something in the program

STUDENT SUPPORT

FACULTY SUPPORT
APPRECIATIVE INQUIRY

DEFINITION
DISCOVERY
DREAM
DESIGN
DESTINY
IMPLEMENTATION FIDELITY
<table>
<thead>
<tr>
<th>List of features to meet outcomes</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1-10 final papers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research class: Hypothesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data gathering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capstone paper: data analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conference proposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>List of features to meet outcomes</td>
<td>Adherence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class 1-10 final papers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research class: Hypothesis</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data gathering</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capstone paper: data analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conference proposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>List of features to meet outcomes</td>
<td>Adherence</td>
<td>Quality</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Class 1-10 final papers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research class: Hypothesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data gathering</td>
<td>no</td>
<td>last minute change</td>
<td></td>
</tr>
<tr>
<td>Capstone paper: data analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conference proposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>List of features to meet outcomes</td>
<td>Adherence</td>
<td>Quality</td>
<td>Exposure</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Class 1-10 final papers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research class: Hypothesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data gathering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capstone paper: data analysis</td>
<td></td>
<td></td>
<td>not offered for 2 semesters</td>
</tr>
<tr>
<td>Conference proposal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>List of features to meet outcomes</td>
<td>Adherence</td>
<td>Quality</td>
<td>Exposure</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Class 1-10 final papers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research class: Hypothesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data gathering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capstone paper: data analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conference proposal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Program: Effective!
Program: Effective!

- Fidelity low, learning outcomes high: Not sure; not working though
- Fidelity high, learning outcomes low: Not sure; not working though
- Fidelity low, learning outcomes low: Not sure; not working though
- Fidelity high, learning outcomes high: Program: Effective!
Program: Effective!

- Fidelity low
- Learning outcomes low
- Modifications needed
- Not sure; not working though
Fidelity: High

Learning Outcomes: High

Program: Effective!

Fidelity: Low

Learning Outcomes: Low

Not sure; something is working

Not sure; not working though

Modifications needed
DOUBLE LOOP LEARNING
Most Learning (Single-Loop)
Improvement within an existing system that rests on unchallenged assumptions that are implicit and unchallenged.

Double-Loop Learning
Expanding the analytical frame to explicitly identify and then challenge underlying assumptions.

http://edbatista.typepad.com/edbatista/images/2006/12/Double-Loop_Learning_2_Large.gif
STORIES WE CAN TELL:

• What’s happening now?
• Compared to where you’ve been?
• What is the sequel?
Outcomes (Overview)

Student of the Doctor of Philosophy in Software Engineering program will be able to:

1. Broad knowledge in computer science, detailed in software engineering: Students will be able to demonstrate a broad knowledge of computer science and a focused understanding of their area of expertise.
2. Conduct Original Research: Students will be able to perform original research in software engineering.
3. Communicate effectively: Students will be able to communicate technical content effectively both orally and in writing.
4. edit new objective

OUTCOME #1: Broad knowledge in computer science, detailed in software engineering:
Students will be able to demonstrate a broad knowledge of computer science and a focused understanding of their area of expertise.

<table>
<thead>
<tr>
<th>#</th>
<th>Assessment Measure</th>
<th>Results</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>edit new measure</td>
<td>edit new result</td>
<td>edit new plan</td>
</tr>
</tbody>
</table>

SUMMARY OF OUTCOME #1

A) DISCUSSION OF RESULTS

B) DISCUSSION OF MODIFICATIONS/RECOMMENDATIONS (CLOSING THE LOOP)
upcoming workshops:
Summer: 10 minute teaching and learning tips videos for 10 weeks (10 in 10)

August 11th & 12th:
2 day seminar on assessment
(contact me if you would like to come)